water saturation
Recently Published Documents


TOTAL DOCUMENTS

2086
(FIVE YEARS 1022)

H-INDEX

56
(FIVE YEARS 17)

2022 ◽  
Vol 10 (1) ◽  
pp. 111
Author(s):  
Jinhuan Zhao ◽  
Changling Liu ◽  
Chengfeng Li ◽  
Yongchao Zhang ◽  
Qingtao Bu ◽  
...  

Characterizing the electrical property of hydrate-bearing sediments is essential for hydrate reservoir identification and saturation evaluation. As the major contributor to electrical conductivity, pore water is a key factor in characterizing the electrical properties of hydrate-bearing sediments. The objective of this study is to clarify the effect of hydrates on pore water and the relationship between pore water characteristics and the saturation exponent of Archie’s law in hydrate-bearing sediments. A combination of X-ray computed tomography and resistivity measurement technology is used to derive the three-dimensional spatial structure and resistivity of hydrate-bearing sediments simultaneously, which is helpful to characterize pore water and investigate the saturation exponent of Archie’s law at the micro-scale. The results show that the resistivity of hydrate-bearing sediments is controlled by changes in pore water distribution and connectivity caused by hydrate formation. With the increase of hydrate saturation, pore water connectivity decreases, but the average coordination number and tortuosity increase due to much smaller and more tortuous throats of pore water divided by hydrate particles. It is also found that the saturation exponent of Archie’s law is controlled by the distribution and connectivity of pore water. As the parameters of connected pore water (e.g., porosity, water saturation) decrease, the saturation exponent decreases. At a low hydrate-saturation stage, the saturation exponent of Archie’s law changes obviously due to the complicated pore structure of hydrate-bearing sediments. A new logarithmic relationship between the saturation exponent of Archie’s law and the tortuosity of pore water is proposed which helps to calculate field hydrate saturation using resistivity logging data.


Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 216
Author(s):  
Ke Man ◽  
Xiaoli Liu ◽  
Zhifei Song ◽  
Zongxu Liu ◽  
Ruilin Liu ◽  
...  

For Fangshan granite in Beijing, the static compression and dynamic compression tests have been carried out separately under natural air drying and water saturation. It was found that the dynamic compressive strength of water-saturated granite is higher than that of air-dried granite, which is contrary to the result that the strength of water-saturated rock is lower than that of air-dried granite under static load. Furthermore, under the medium strain rate condition, when the strain rate is 85 s−1, the dynamic strength of natural air-dried granite could be increased by nearly 0.5 times compared with its static state. The dynamic strength of water-saturated granite could be increased by nearly 1–2 times compared with its static strength, which shows that water-saturated granite has stronger strain rate sensitivity than natural air-dried granite. Meanwhile, under impact loading, from the perspective of water-bearing granite the Bernoulli effect of fluid, the adhesion effect of free water and the Stefan effect of fluid in water-saturated granite were revealed, and found to be the essential reasons affecting the dynamic strength of water-saturated granite. The dynamic strength in different water-bearing states in the range of medium strain rate could then be analyzed in depth, providing a certain reference value for the strength design of water-bearing rock engineering.


Geofluids ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-9
Author(s):  
Dahai Wang ◽  
Jinbu Li ◽  
Lili Liu ◽  
Ji Zhang ◽  
Zhanhai Yu ◽  
...  

The value of a cementation exponent, usually obtained by rock and electricity experiments, significantly affects the calculation of water saturation, thickness of the hydrocarbon reservoir, and recovery rate. The determination of the cementation exponent for porous-media reservoirs has been a challenge because of the limited core sampling. A new method was proposed to determine the value of cementation exponent for complex triple-porosity media reservoirs in the work. Firstly, the work discussed the effects of fractures and nonconnected vugs on the cementation exponent of the reservoir as well as the calculation method of the cementation exponent of the dual-porosity media reservoir. Then, a new model for calculating the cementation exponent of triple-porosity media reservoirs was derived by combining the Maxwell-Garnett theory and series-parallel theory, which matched with the real physical-experiment data of rocks. The results showed that the fractures decreased the cementation exponent of the reservoir but the vugs increased. The mixture of matrix pores, fractures, and vugs made the value of the cementation exponent of the triple-porosity media reservoir vary around 2.0. The conductivity of the triple-porosity media reservoir was the external macroscopic expression of the microscopic conductive network. The new calculation model of the cementation exponent proposed in the work could reasonably predict the cementation exponent of the strongly inhomogeneous triple-porosity media reservoir.


2022 ◽  
Author(s):  
M. Romanenko

Abstract. Obtaining wood with high performance properties on the basis of chemical and mechanical action as a result of optimization of technological processes and the use of temperature exposure. The initial raw material is hardwood (aspen, alder), which are little used in construction and in the production of finishing materials. The condition for obtaining wood with high operating properties (increasing density, strength, reducing water saturation, ensuring the dimensional stability of samples for a long time) is the ability of wood as a natural polymer to change properties under the combined effect of temperature and pressure.


2022 ◽  
Author(s):  
Bo Gao ◽  
Ethan T. Coon

Abstract. Permafrost degradation within a warming climate poses a significant environmental threat through both the permafrost carbon feedback and damage to human communities and infrastructure. Understanding this threat relies on better understanding and numerical representation of thermo-hydrological permafrost processes, and the subsequent accurate prediction of permafrost dynamics. All models include simplified assumptions, implying a tradeoff between model complexity and prediction accuracy. The main purpose of this work is to investigate this tradeoff when applying the following commonly made assumptions: (1) assuming equal density of ice and liquid water in frozen soil; (2) neglecting the effect of cryosuction in unsaturated freezing soil; and (3) neglecting advective heat transport during soil freezing and thaw. This study designed a set of 62 numerical experiments using the Advanced Terrestrial Simulator (ATS v1.2) to evaluate the effects of these choices on permafrost hydrological outputs, including both integrated and pointwise quantities. Simulations were conducted under different climate conditions and soil properties from three different sites in both column- and hillslope-scale configurations. Results showed that amongst the three physical assumptions, soil cryosuction is the most crucial yet commonly ignored process. Neglecting cryosuction, on average, can cause 10 % ~ 20 % error in predicting evaporation, 50 % ~ 60 % error in discharge, 10 % ~ 30 % error in thaw depth, and 10 % ~ 30 % error in soil temperature at 1 m beneath surface. The prediction error for subsurface temperature and water saturation is more obvious at hillslope scales due to the presence of lateral flux. By comparison, using equal ice-liquid density has a minor impact on most hydrological variables, but significantly affects soil water saturation with an averaged 5 % ~ 15 % error. Neglecting advective heat transport presents the least error, 5 % or even much lower, in most variables for a general Arctic tundra system, and can decrease the simulation time at hillslope scales by 40 % ~ 80 %. By challenging these commonly made assumptions, this work provides permafrost hydrology modelers important context for better choosing the appropriate process representation for a given modeling experiment.


2022 ◽  
Vol 22 (1) ◽  
pp. 65-91
Author(s):  
Manuel Baumgartner ◽  
Christian Rolf ◽  
Jens-Uwe Grooß ◽  
Julia Schneider ◽  
Tobias Schorr ◽  
...  

Abstract. Laboratory measurements at the AIDA cloud chamber and airborne in situ observations suggest that the homogeneous freezing thresholds at low temperatures are possibly higher than expected from the so-called “Koop line”. This finding is of importance, because the ice onset relative humidity affects the cirrus cloud coverage and, at the very low temperatures of the tropical tropopause layer, together with the number of ice crystals also the transport of water vapor into the stratosphere. Both the appearance of cirrus clouds and the amount of stratospheric water feed back to the radiative budget of the atmosphere. In order to explore the enhanced ice onset humidities, we re-examine the entire homogeneous ice nucleation process, ice onset, and nucleated crystal numbers, by means of a two-moment microphysics scheme embedded in the trajectory-based model (CLaMS-Ice) as follows: the well-understood and described theoretical framework of homogeneous ice nucleation includes certain formulations of the water activity of the freezing aerosol particles and the saturation vapor pressure of water with respect to liquid water. However, different formulations are available for both parameters. Here, we present extensive sensitivity simulations testing the influence of three different formulations for the water activity and four for the water saturation on homogeneous ice nucleation. We found that the number of nucleated ice crystals is almost independent of these formulations but is instead sensitive to the size distribution of the freezing aerosol particles. The ice onset humidities, also depending on the particle size, are however significantly affected by the choices of the water activity and water saturation, in particular at cold temperatures ≲205 K. From the CLaMS-Ice sensitivity simulations, we here provide combinations of water saturation and water activity formulations suitable to reproduce the new, enhanced freezing line.


2022 ◽  
Vol 6 (1) ◽  
pp. 54-68
Author(s):  
Jiale Zhao ◽  
Mengdi Sun ◽  
Zhejun Pan ◽  
Bo Liu ◽  
Mehdi Ostadhassan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document