Numerical Study and Optimisation of Channel Geometry and Gas Diffusion Layer of a PEM Fuel Cell

Author(s):  
Surajudeen O. Obayopo ◽  
Tunde Bello-Ochende ◽  
Josua P. Meyer

Fuel cell technology offers a promising alternative to conventional fossil fuel energy sources. Proton exchange membrane fuel cells (PEMFC) in particular have become sustainable choice for the automotive industries because of its low pollution, low noise and quick start-up at low temperatures. Researches are on-going to improve its performance and reduce cost of this class of energy systems. In this work, a novel approach to optimise proton exchange membrane (PEM) fuel cell gas channels in the systems bipolar plates with the aim of globally optimising the overall system net power performance at minimised pressure drop and subsequently low pumping power requirement for the reactant species gas was carried out. In addition, the effect of various gas diffusion layer (GDL) properties on the fuel cell performance was examined. Simulations were done ranging from 0.6 to 1.6 mm for channel width, 0.5 to 3.0 mm for channel depth and 0.1 to 0.7 for the GDL porosity. A gradient based optimisation algorithm is implemented which effectively handles an objective function obtained from a computational fluid dynamics simulation to further enhance the obtained optimum values of the examined multiple parameters for the fuel cell system. The results indicate that effective match of reactant gas channel and GDL properties enhance the performance of the fuel cell system. The numerical results computed agree well with experimental data in the literature. Consequently, the results obtained provide useful information for improving the design of fuel cells.

2006 ◽  
Vol 4 (4) ◽  
pp. 468-473 ◽  
Author(s):  
Alessandra Perna

The purpose of this work is to investigate, by a thermodynamic analysis, the effects of the process variables on the performance of an autothermal reforming (ATR)-based fuel processor, operating on ethanol as fuel, integrated into an overall proton exchange membrane (PEM) fuel cell system. This analysis has been carried out finding the better operating conditions to maximize hydrogen yield and to minimize CO carbon monoxide production. In order to evaluate the overall efficiency of the system, PEM fuel cell operations have been analyzed by an available parametric model.


2001 ◽  
Author(s):  
Daisie D. Boettner ◽  
Gino Paganelli ◽  
Yann G. Guezennec ◽  
Giorgio Rizzoni ◽  
Michael J. Moran

Abstract This paper describes a Proton Exchange Membrane (PEM) fuel cell system model for automotive applications that includes an air compressor, cooling system, and other auxiliaries. The fuel cell system model has been integrated into a vehicle performance simulator that determines fuel economy and allows consideration of control strategies. Significant fuel cell system efficiency improvements may be possible through control of the air compressor and other auxiliaries. Fuel cell system efficiency results are presented for two limiting air compressor cases: ideal control and no control. Extension of the present analysis to hybrid configurations consisting of a fuel cell system and battery is currently under study.


Author(s):  
Kui Jiao ◽  
Biao Zhou

Liquid water transport inside proton exchange membrane (PEM) fuel cells is one of the key challenges for water management in a PEM fuel cell. Investigation of the air-water flow patterns inside fuel cell gas flow channels with gas diffusion layer (GDL) would provide valuable information that could be used in fuel cell design and optimization. This paper presents an accelerated numerical investigation of air-water flow across a GDL with a serpentine channel on PEM fuel cell cathode by use of a commercial computational fluid dynamics software package FLUENT. Detailed flow patterns with air-water across the porous media were investigated and discussed.


Sign in / Sign up

Export Citation Format

Share Document