LES Simulation of an Enclosed Turbulent Reacting Methane Jet With the Tabulated Premixed CMC Method

Author(s):  
Carlos Velez ◽  
Scott Martin ◽  
Aleksander Jemcov ◽  
Subith Vasu

The Tabulated Premixed Conditional Moment Closure Method (T-PCMC) has been shown to provide the capability to model turbulent, premixed methane flames with detailed chemistry and reasonable runtimes in a RANS environment [1]. Here the premixed conditional moment closure method is extended to Large Eddy Simulation. The new model is validated with the turbulent, enclosed reacting methane backward facing step data from El Banhawy [2]. The experimental data has a rectangular test section at atmospheric pressure and temperature with an inlet velocity of 10.5 m/s and an equivalence ratio of 0.9 for two different step heights. Contours of major species, velocity and temperature are provided. The T-PCMC model falls into the class of table lookup turbulent combustion models where the combustion model is solved offline over a range of conditions and stored in a table that is accessed by the CFD code using three controlling variables; the reaction progress variable, variance and local scalar dissipation rate. The local scalar dissipation is used to account for the affects of the small scale mixing on the reaction rates. A presumed shape beta function PDF is used to account for the effects of large scale turbulence on the reactions. Sub-grid scale models are incorporated for the scalar dissipation and variance. The open source CFD code OpenFOAM is used with the compressible Smagorinsky LES model. Velocity, temperature and major species are compared to the experimental data. Once validated, this “low runtime” CFD turbulent combustion model will have great utility for designing the next generation of lean premixed gas turbine combustors.

Author(s):  
Carlos Velez ◽  
Scott Martin ◽  
Aleksander Jemcov ◽  
Subith Vasu

The tabulated premixed conditional moment closure (T-PCMC) method has been shown to provide the capability to model turbulent, premixed methane flames with detailed chemistry and reasonable runtimes in Reynolds-averaged Navier–Stokes (RANS) environment by Martin et al. (2013, “Modeling an Enclosed, Turbulent Reacting Methane Jet With the Premixed Conditional Moment Closure Method,” ASME Paper No. GT2013-95092). Here, the premixed conditional moment closure (PCMC) method is extended to large eddy simulation (LES). The new model is validated with the turbulent, enclosed reacting methane backward facing step data from El Banhawy et al. (1983, “Premixed, Turbulent Combustion of a Sudden-Expansion Flow,” Combust. Flame, 50, pp. 153–165). The experimental data have a rectangular test section at atmospheric pressure and temperature with an inlet velocity of 10.5 m/s and an equivalence ratio of 0.9 for two different step heights. Contours of major species, velocity, and temperature are provided. The T-PCMC model falls into the class of table lookup turbulent combustion models in which the combustion model is solved offline over a range of conditions and stored in a table that is accessed by the computational fluid dynamic (CFD) code using three controlling variables: the reaction progress variable (RPV), variance, and local scalar dissipation rate. The local scalar dissipation rate is used to account for the affects of the small-scale mixing on the reaction rates. A presumed shape beta function probability density function (PDF) is used to account for the effects of subgrid scale (SGS) turbulence on the reactions. SGS models are incorporated for the scalar dissipation and variance. The open source CFD code OpenFOAM is used with the compressible Smagorinsky LES model. Velocity, temperature, and major species are compared to the experimental data. Once validated, this low “runtime” CFD turbulent combustion model will have great utility for designing the next generation of lean premixed (LPM) gas turbine combustors.


Author(s):  
Scott Martin ◽  
Aleksandar Jemcov ◽  
Björn de Ruijter

Here the premixed Conditional Moment Closure (CMC) method is used to model the recent PIV and Raman turbulent, enclosed reacting methane jet data from DLR Stuttgart [1]. The experimental data has a rectangular test section at atmospheric pressure and temperature with a single inlet jet. A jet velocity of 90 m/s is used with an adiabatic flame temperature of 2,064 K. Contours of major species, temperature and velocities along with velocity rms values are provided. The conditional moment closure model has been shown to provide the capability to model turbulent, premixed methane flames with detailed chemistry and reasonable runtimes [2]. The simplified CMC model used here falls into the class of table lookup turbulent combustion models where the chemical kinetics are solved offline over a range of conditions and stored in a table that is accessed by the CFD code. Most table lookup models are based on the laminar 1-D flamelet equations, which assume the small scale turbulence does not affect the reaction rates, only the large scale turbulence has an effect on the reaction rates. The CMC model is derived from first principles to account for the effects of small scale turbulence on the reaction rates, as well as the effects of the large scale mixing, making it more versatile than other models. This is accomplished by conditioning the scalars with the reaction progress variable. By conditioning the scalars and accounting for the small scale mixing, the effects of turbulent fluctuations of the temperature on the reaction rates are more accurately modeled. The scalar dissipation is used to account for the effects of the small scale mixing on the reaction rates. The original premixed CMC model used a constant value of scalar dissipation, here the scalar dissipation is conditioned by the reaction progress variable. The steady RANS 3-D version of the open source CFD code OpenFOAM is used. Velocity, temperature and species are compared to the experimental data. Once validated, this CFD turbulent combustion model will have great utility for designing lean premixed gas turbine combustors.


2019 ◽  
Vol 103 (4) ◽  
pp. 847-869 ◽  
Author(s):  
A. Giusti ◽  
E. Mastorakos

AbstractThe development of better laser-based experimental methods and the fast rise in computer power has created an unprecedented shift in turbulent combustion research. The range of species and quantities measured and the advent of kHz-level planar diagnostics are now providing great insights in important phenomena and applications such as local and global extinction, pollutants, and spray combustion that were hitherto unavailable. In simulations, the shift to LES allows better representation of the turbulent flow in complex geometries, but despite the fact that the grid size is smaller than in RANS, the push towards realistic conditions and the need to include more detailed chemistry that includes very fast species and thin reaction zones emphasize the necessity of a sub-grid turbulent combustion model. The paper discusses examples from current research with experiments and modelling that focus on flame transients (self-excited oscillations, local extinction), sprays, soot emissions, and on practical applications. These demonstrate how current models are being validated by experimental data and the concerted efforts the community is taking to promote the modelling tools to industry. In addition, the various coordinated International Workshops on non-premixed, premixed, and spray flames, and on soot are discussed and some of their target flames are explored. These comprise flames that are relatively simple to describe from a fluid mechanics perspective but contain difficult-to-model combustion problems such as extinction, pollutants and multi-mode reaction zones. Recently, swirl spray flames, which are more representative of industrial devices, have been added to the target flames. Typically, good agreement is found with LES and some combustion models such as the progress variable - mixture fraction flamelet model, the Conditional Moment Closure, and the Transported PDF method, but predicting soot emissions and the condition of complete extinction in complex geometries is still elusive.


1999 ◽  
Vol 23 (3-4) ◽  
pp. 425-433 ◽  
Author(s):  
S.- H. Kim ◽  
T. Liu ◽  
K.Y. Huh

A turbulent nonpremixed flame of H2/CO-air stabilized on a bluff-body is simulated by the conditional moment closure (CMC) model. Full spatial variation of the conditional quantities is taken into account for an elliptic recirculating flow field. Comparison has shown reasonable agreement for the conditional and Favre mean temperature and mass fractions of CO and H20 between calculation and experiment. Overprediction of the peak OH mass fraction is attributed to inaccurate modelling of the conditional scalar dissipation rate. The CMC model is capable of predicting major features of a turbulent diffusion flame characterized by finite chemical reaction rates.


Sign in / Sign up

Export Citation Format

Share Document