scholarly journals Turbulent Combustion Modelling and Experiments: Recent Trends and Developments

2019 ◽  
Vol 103 (4) ◽  
pp. 847-869 ◽  
Author(s):  
A. Giusti ◽  
E. Mastorakos

AbstractThe development of better laser-based experimental methods and the fast rise in computer power has created an unprecedented shift in turbulent combustion research. The range of species and quantities measured and the advent of kHz-level planar diagnostics are now providing great insights in important phenomena and applications such as local and global extinction, pollutants, and spray combustion that were hitherto unavailable. In simulations, the shift to LES allows better representation of the turbulent flow in complex geometries, but despite the fact that the grid size is smaller than in RANS, the push towards realistic conditions and the need to include more detailed chemistry that includes very fast species and thin reaction zones emphasize the necessity of a sub-grid turbulent combustion model. The paper discusses examples from current research with experiments and modelling that focus on flame transients (self-excited oscillations, local extinction), sprays, soot emissions, and on practical applications. These demonstrate how current models are being validated by experimental data and the concerted efforts the community is taking to promote the modelling tools to industry. In addition, the various coordinated International Workshops on non-premixed, premixed, and spray flames, and on soot are discussed and some of their target flames are explored. These comprise flames that are relatively simple to describe from a fluid mechanics perspective but contain difficult-to-model combustion problems such as extinction, pollutants and multi-mode reaction zones. Recently, swirl spray flames, which are more representative of industrial devices, have been added to the target flames. Typically, good agreement is found with LES and some combustion models such as the progress variable - mixture fraction flamelet model, the Conditional Moment Closure, and the Transported PDF method, but predicting soot emissions and the condition of complete extinction in complex geometries is still elusive.

Author(s):  
Carlos Velez ◽  
Scott Martin ◽  
Aleksander Jemcov ◽  
Subith Vasu

The tabulated premixed conditional moment closure (T-PCMC) method has been shown to provide the capability to model turbulent, premixed methane flames with detailed chemistry and reasonable runtimes in Reynolds-averaged Navier–Stokes (RANS) environment by Martin et al. (2013, “Modeling an Enclosed, Turbulent Reacting Methane Jet With the Premixed Conditional Moment Closure Method,” ASME Paper No. GT2013-95092). Here, the premixed conditional moment closure (PCMC) method is extended to large eddy simulation (LES). The new model is validated with the turbulent, enclosed reacting methane backward facing step data from El Banhawy et al. (1983, “Premixed, Turbulent Combustion of a Sudden-Expansion Flow,” Combust. Flame, 50, pp. 153–165). The experimental data have a rectangular test section at atmospheric pressure and temperature with an inlet velocity of 10.5 m/s and an equivalence ratio of 0.9 for two different step heights. Contours of major species, velocity, and temperature are provided. The T-PCMC model falls into the class of table lookup turbulent combustion models in which the combustion model is solved offline over a range of conditions and stored in a table that is accessed by the computational fluid dynamic (CFD) code using three controlling variables: the reaction progress variable (RPV), variance, and local scalar dissipation rate. The local scalar dissipation rate is used to account for the affects of the small-scale mixing on the reaction rates. A presumed shape beta function probability density function (PDF) is used to account for the effects of subgrid scale (SGS) turbulence on the reactions. SGS models are incorporated for the scalar dissipation and variance. The open source CFD code OpenFOAM is used with the compressible Smagorinsky LES model. Velocity, temperature, and major species are compared to the experimental data. Once validated, this low “runtime” CFD turbulent combustion model will have great utility for designing the next generation of lean premixed (LPM) gas turbine combustors.


Author(s):  
Carlos Velez ◽  
Scott Martin ◽  
Aleksander Jemcov ◽  
Subith Vasu

The Tabulated Premixed Conditional Moment Closure Method (T-PCMC) has been shown to provide the capability to model turbulent, premixed methane flames with detailed chemistry and reasonable runtimes in a RANS environment [1]. Here the premixed conditional moment closure method is extended to Large Eddy Simulation. The new model is validated with the turbulent, enclosed reacting methane backward facing step data from El Banhawy [2]. The experimental data has a rectangular test section at atmospheric pressure and temperature with an inlet velocity of 10.5 m/s and an equivalence ratio of 0.9 for two different step heights. Contours of major species, velocity and temperature are provided. The T-PCMC model falls into the class of table lookup turbulent combustion models where the combustion model is solved offline over a range of conditions and stored in a table that is accessed by the CFD code using three controlling variables; the reaction progress variable, variance and local scalar dissipation rate. The local scalar dissipation is used to account for the affects of the small scale mixing on the reaction rates. A presumed shape beta function PDF is used to account for the effects of large scale turbulence on the reactions. Sub-grid scale models are incorporated for the scalar dissipation and variance. The open source CFD code OpenFOAM is used with the compressible Smagorinsky LES model. Velocity, temperature and major species are compared to the experimental data. Once validated, this “low runtime” CFD turbulent combustion model will have great utility for designing the next generation of lean premixed gas turbine combustors.


Author(s):  
Scott Martin ◽  
Aleksandar Jemcov ◽  
Björn de Ruijter

Here the premixed Conditional Moment Closure (CMC) method is used to model the recent PIV and Raman turbulent, enclosed reacting methane jet data from DLR Stuttgart [1]. The experimental data has a rectangular test section at atmospheric pressure and temperature with a single inlet jet. A jet velocity of 90 m/s is used with an adiabatic flame temperature of 2,064 K. Contours of major species, temperature and velocities along with velocity rms values are provided. The conditional moment closure model has been shown to provide the capability to model turbulent, premixed methane flames with detailed chemistry and reasonable runtimes [2]. The simplified CMC model used here falls into the class of table lookup turbulent combustion models where the chemical kinetics are solved offline over a range of conditions and stored in a table that is accessed by the CFD code. Most table lookup models are based on the laminar 1-D flamelet equations, which assume the small scale turbulence does not affect the reaction rates, only the large scale turbulence has an effect on the reaction rates. The CMC model is derived from first principles to account for the effects of small scale turbulence on the reaction rates, as well as the effects of the large scale mixing, making it more versatile than other models. This is accomplished by conditioning the scalars with the reaction progress variable. By conditioning the scalars and accounting for the small scale mixing, the effects of turbulent fluctuations of the temperature on the reaction rates are more accurately modeled. The scalar dissipation is used to account for the effects of the small scale mixing on the reaction rates. The original premixed CMC model used a constant value of scalar dissipation, here the scalar dissipation is conditioned by the reaction progress variable. The steady RANS 3-D version of the open source CFD code OpenFOAM is used. Velocity, temperature and species are compared to the experimental data. Once validated, this CFD turbulent combustion model will have great utility for designing lean premixed gas turbine combustors.


Author(s):  
Stefanie De Graaf ◽  
Ludovic de Guillebon ◽  
Marco Konle ◽  
W. Kendal Bushe

Abstract This paper considers a variation on Conditional Moment Closure (CMC) modelling for turbulence-chemistry interaction called the Uniform Conditional State (UCS) model and its application to the prediction of swirl-stabilized flames. UCS is essentially a zero-spatial dimensional, multi-condition CMC method. Unlike conventional CMC methods, for flames that are in (statistically) steady flows, the chemistry can be solved a priori in conditional space only. The reactive scalars are then mapped into real space by taking the inner product of the resulting conditional averages with the joint probability density function of the conditioning variables, here taken to have a presumed form that is a function of the mean and variance of the conditioning variables. Two conditioning variables are used, mixture fraction and progress variable. The combination of these allows for the resulting chemistry table to be applicable to both premixed and non-premixed combustion but also in the partially-premixed regime. In doing so, this new approach is promising to be highly suitable for simulating industrial applications and complex geometries. Another promising aspect is the universal applicability to different fuels and kinetic mechanisms providing great flexibility to the user of this method. Ultimately it is intended to aid the development of industrial burners by providing detailed information about the local composition and emission production, while keeping computational costs significantly low. Not only does this provide additional insight into global emissions and fuel consumption of a new design, but it allows for variability between different stages of mixedness as well as the testing of, for example, alternative fuels in established burner configurations. In this present study a comparison of different fuels and initial conditions is being conducted to analyze their effect on the resulting UCS solution — meaning the chemical source-terms, composition and thermodynamic state in conditional space. Furthermore the use of the UCS solutions as a predictive method in a RANS simulation is being presented here. The paper illustrates the UCS predictions and compares them to experimental data, as well as previously published simulation results of more established modelling approaches. The experimental test case chosen is a model combustor with a swirl-stabilized flame and high technical relevance which demonstrates the applicability of the UCS method to industrial designs for aero engines. Further investigations have begun including the application of this new tool to a real industrial combustor within the framework of this collaboration with MTU Aero Engines AG.


2001 ◽  
Author(s):  
Qing Jiang ◽  
Chao Zhang

Abstract A study of the nitrogen oxides (NOx) emission and combustion process in a gas-fired regenerative, high temperature, low emission industrial furnace has been carried out numerically. The effect of two additives, methanol (CH3OH) and hydrogen peroxide (H2O2), to fuel on the NOx emission has been studied. A moment closure method with the assumed β probability density function (PDF) for mixture fraction is used in the present work to model the turbulent non-premixed combustion process in the furnace. The combustion model is based on the assumption of instantaneous full chemical equilibrium. The results showed that CH3OH is effective in the reduction of NOx in a regenerative industrial furnace. However, H2O2 has no significant effect on the NOx emission.


Author(s):  
Andrea Giusti ◽  
Luca Magri ◽  
Marco Zedda

Indirect noise generated by the acceleration of combustion inhomogeneities is an important aspect in the design of aeroengines because of its impact on the overall noise emitted by an aircraft and the possible contribution to combustion instabilities. In this study, a realistic rich-quench-lean combustor is numerically investigated, with the objective of quantitatively analyzing the formation and evolution of flow inhomogeneities and determine the level of indirect combustion noise in the nozzle guide vane (NGV). Both entropy and compositional noise are calculated in this work. A high-fidelity numerical simulation of the combustion chamber, based on the Large-Eddy Simulation (LES) approach with the Conditional Moment Closure (CMC) combustion model, is performed. The contributions of the different air streams to the formation of flow inhomogeneities are pinned down and separated with seven dedicated passive scalars. LES-CMC results are then used to determine the acoustic sources to feed an NGV aeroacoustic model, which outputs the noise generated by entropy and compositional inhomogeneities. Results show that non-negligible fluctuations of temperature and composition reach the combustor’s exit. Combustion inhomogeneities originate both from finite-rate chemistry effects and incomplete mixing. In particular, the role of mixing with dilution and liner air flows on the level of combustion inhomogeneities at the combustor’s exit is highlighted. The species that most contribute to indirect noise are identified and the transfer functions of a realistic NGV are computed. The noise level indicates that indirect noise generated by temperature fluctuations is larger that the indirect noise generated by compositional inhomogeneities, although the latter is not negligible and is expected to become louder in supersonic nozzles. It is also shown that relatively small fluctuations of the local flame structure can lead to significant variations of the nozzle transfer function, whose gain increases with the Mach number. This highlights the necessity of an on-line solution of the local flame structure, which is performed in this paper by CMC, for an accurate prediction of the level of compositional noise. This study opens new possibilities for the identification, separation and calculation of the sources of indirect combustion noise in realistic aeronautical gas turbines.


Author(s):  
Andrea Giusti ◽  
Luca Magri ◽  
Marco Zedda

Indirect noise generated by the acceleration of combustion inhomogeneities is an important aspect in the design of aero-engines because of its impact on the overall noise emitted by an aircraft and the possible contribution to combustion instabilities. In this study, a realistic rich-quench-lean (RQL) combustor is numerically investigated, with the objective of quantitatively analyzing the formation and evolution of flow inhomogeneities and determining the level of indirect combustion noise in the nozzle guide vane (NGV). Both entropy and compositional noise are calculated in this work. A high-fidelity numerical simulation of the combustion chamber, based on the large-eddy simulation (LES) approach with the conditional moment closure (CMC) combustion model, is performed. The contributions of the different air streams to the formation of flow inhomogeneities are pinned down and separated with seven dedicated passive scalars. LES-CMC results are then used to determine the acoustic sources to feed an NGV aeroacoustic model, which outputs the noise generated by entropy and compositional inhomogeneities. Results show that non-negligible fluctuations of temperature and composition reach the combustor's exit. Combustion inhomogeneities originate both from finite-rate chemistry effects and incomplete mixing. In particular, the role of mixing with dilution and liner air flows on the level of combustion inhomogeneities at the combustor's exit is highlighted. The species that most contribute to indirect noise are identified and the transfer functions of a realistic NGV are computed. The noise level indicates that indirect noise generated by temperature fluctuations is larger than the indirect noise generated by compositional inhomogeneities, although the latter is not negligible and is expected to become louder in supersonic nozzles. It is also shown that relatively small fluctuations of the local flame structure can lead to significant variations of the nozzle transfer function, whose gain increases with the Mach number. This highlights the necessity of an on-line solution of the local flame structure, which is performed in this paper by CMC, for an accurate prediction of the level of compositional noise. This study opens new possibilities for the identification, separation, and calculation of the sources of indirect combustion noise in realistic aeronautical gas turbines.


Author(s):  
Tomoaki Watanabe ◽  
Hiroki Yasuhara ◽  
Yasuhiko Sakai ◽  
Takashi Kubo ◽  
Kouji Nagata ◽  
...  

It is important in engineering to elucidate the mechanism of a chemical reaction in turbulent flow. But there are still few studies on reacting turbulent flow in a liquid phase. In this study, the two-dimensional liquid jet with the second-order reaction (A+B←R) is investigated. The concentrations of the species R and the conserved scalar (which is the concentration of other species independent of the above chemical reaction) are measured simultaneously by the optical fiber probe based on light absorbtion spectroscopic method. The concentrations of species A and B are obtained from the conserved scalar theory. Regarding the velocity field, the streamwise velocity is measured by the hot-film anemometer. The moment closure methods are often used for the prediction of turbulent flow. But it is difficult to apply it to the reacting turbulent flow because of the high non-linearity of the reaction rate terms. It is commonly known that the values of concentrations depend strongly on the mixture fraction (which is a conserved scalar) defined as the normalized concentration of the species which is independent of reaction. Hence, Conditional moment closure (CMC) methods are useful for the prediction of the turbulent flow with chemical reactions. In this study, conditional scalar statistics are investigated by using the conditional moment closure methods and experimental data. It is shown that the conditional averages of concentration of reactant and product species approach the equilibrium limit (which correspond to the limiting case of the fast chemical reaction) in the downstream direction and the value of the conditional scalar (mixture fraction) dissipation decreases and its distribution varies in the downstream direction and comes to show the local minimum value near the point η = ξS (which is the stoichiometric value of the mixture fraction).


Sign in / Sign up

Export Citation Format

Share Document