Feasibility of Innovative Solar-Thermo-Acoustic Power Conversion Cycles

Author(s):  
Omar Behar ◽  
Saumitra Saxena ◽  
William L. Roberts

Abstract The techno-economic assessment of the concentrating solar power thermo-acoustic power conversion systems is carried out to identify the optimum conditions, under-which the solar thermo-acoustic might be competitive to the current commercial solar thermal power technologies. The thermal and economic performance of a thermo-acoustic engine integrated to five different solar collectors including Compound Parabolic Collector, Linear Fresnel, Parabolic Trough, Central receiver, and Solar Dish is compared to the current commercial solar thermal power technologies as well as to their corresponding Carnot-cycle. To do so, a modular modeling approach is used to consider all the available commercial technologies, through combining a modular energy model with a simplified economic model. Jeddah city (Saudi Arabia) has been chosen as a reference site for the present study. The results indicate that the integration of compound and dish solar collectors to a thermo-acoustic engine might offer competitive solutions. Compound collectors might be more suitable for integration with the thermo-acoustic engine than linear Fresnel collectors, if the exergy efficiency of the engine reaches 40%. Besides, dish-thermo-acoustic system becomes more competitive than current dish-mechanical Stirling engine, if the investment costs of the thermo-acoustic engine are reduced to 3500 $/kWe, but the operating temperature should be above 700°C. Improving the exergy efficiency of the thermos-acoustic engines, from 35% to 40%, could make the dish-thermo-acoustic system more competitive than current dish-mechanical Stirling engines at a working temperature of 500°C. The study concludes that more efforts must be focused on reducing the costs of the TA devices rather than on improving efficiency.

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 81425-81446
Author(s):  
Surender Kannaiyan ◽  
Neeraj Dhanraj Bokde ◽  
Zong Woo Geem

2020 ◽  
pp. 1-46
Author(s):  
Alain Christian Biboum ◽  
Ahmet Yilanci

Abstract In this study, it is aimed to conduct the thermodynamic and economic analysis of solar thermal power plants using parabolic trough collectors (PTC), linear Fresnel reflectors (LFR) and solar tower (ST) technologies for Cameroon. The analysis is performed for each power plant with the installed capacity of 5 MWe. Initial investment costs for the solar thermal power plants using PTC, LFR and ST technologies are estimated to be 33.49 Million USD, 18.77 Million USD and 36.31 Million USD while levelized costs of electricity (LCOE) are found to be varying from 145.6 USD/MWh to 186.8 USD/MWh, 112.2 USD/MWh to 154.2 USD/MWh and 179.2 USD/MWh to 220.4 USD/MWh, respectively. For the solar thermal power plants using PTC, LFR and ST technologies, payback periods are obtained to be 6.57 years, 6.84 years and 6.02 years, and also, internal rates on the return are calculated to be 21.03%, 20.42% and 22.47%, respectively. Overall energy and exergy efficiency values are found to be 13.39% and 14.37%; 11.90% and 13.74%; 12.13% and 13.64% for the solar thermal power plants using PTC, LFR and ST technologies, respectively. In conclusion, it is seen that LFR technology presents the best performance with the combination of thermodynamic and economic metrics for the deployment of solar thermal power plants in the countries in sub-Saharan Africa like Cameroon.


Energy ◽  
2018 ◽  
Vol 149 ◽  
pp. 473-484 ◽  
Author(s):  
Alicia Bayon ◽  
Roman Bader ◽  
Mehdi Jafarian ◽  
Larissa Fedunik-Hofman ◽  
Yanping Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document