Vorticity Modification in a Turbulent Channel Flow by Microbubble Injection

Author(s):  
Claudia del C. Gutierrez-Torres ◽  
Jose A. Jimenez-Bernal ◽  
Elvis E. Dominguez-Ontiveros ◽  
Yassin A. Hassan

Investigation of the drag reduction phenomenon has been carried out for several years. Several techniques to reduce the drag have been applied and researched for a number of years. Microbubbles injection within a turbulent boundary layer is one method utilized to achieve reduction of drag. In this work, the effects of the presence of microbubbles in the boundary layer of a turbulent channel flow are discussed.

2015 ◽  
Vol 27 (7) ◽  
pp. 075101 ◽  
Author(s):  
A. Stroh ◽  
B. Frohnapfel ◽  
P. Schlatter ◽  
Y. Hasegawa

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Martin Skote ◽  
Maneesh Mishra ◽  
Yanhua Wu

Spanwise oscillation applied on the wall under a spatially developing turbulent boundary layer flow is investigated using direct numerical simulation. The temporal wall forcing produces a considerable drag reduction over the region where oscillation occurs. Downstream development of drag reduction is investigated from Reynolds number dependency perspective. An alternative to the previously suggested power-law relation between Reynolds number and peak drag reduction values, which is valid for channel flow as well, is proposed. Considerable deviation in the variation of drag reduction with Reynolds number between different previous investigations of channel flow is found. The shift in velocity profile, which has been used in the past for explaining the diminishing drag reduction at higher Reynolds number for riblets, is investigated. A new predictive formula is derived, replacing the ones found in the literature. Furthermore, unlike for the case of riblets, the shift is varying downstream in the case of wall oscillations, which is a manifestation of the fact that the boundary layer has not reached a new equilibrium over the limited downstream distance in the simulations. Taking this into account, the predictive model agrees well with DNS data. On the other hand, the growth of the boundary layer does not influence the drag reduction prediction.


2014 ◽  
Vol 746 ◽  
pp. 536-564 ◽  
Author(s):  
Daniel J. Wise ◽  
Pierre Ricco

AbstractThe changes in a turbulent channel flow subjected to sinusoidal oscillations of wall flush-mounted rigid discs are studied by means of direct numerical simulations (DNS). The Reynolds number is ${Re}_{\tau }=180$, based on the friction velocity of the stationary-wall case and the half-channel height. The primary effect of the wall forcing is the sustained reduction of wall-shear stress, which reaches a maximum of 20 %. A parametric study on the disc diameter, maximum tip velocity, and oscillation period is presented, with the aim of identifying the optimal parameters which guarantee maximum drag reduction and maximum net energy saving, the latter computed by taking into account the power spent to actuate the discs. This may be positive and reaches 6 %. The Rosenblat viscous pump flow, namely the laminar flow induced by sinusoidal in-plane oscillations of an infinite disc beneath a quiescent fluid, is used to predict accurately the power spent for disc motion in the fully developed turbulent channel flow case and to estimate localized and transient regions over the disc surface subjected to the turbulent regenerative braking effect, for which the wall turbulence exerts work on the discs. The Fukagata–Iwamoto–Kasagi identity is employed effectively to show that the wall-friction reduction is due to two distinguished effects. One effect is linked to the direct shearing action of the near-wall oscillating-disc boundary layer on the wall turbulence, which causes the attenuation of the turbulent Reynolds stresses. The other effect is due to the additional disc-flow Reynolds stresses produced by the streamwise-elongated structures which form between discs and modulate slowly in time. The contribution to drag reduction due to turbulent Reynolds stress attenuation depends on the penetration thickness of the disc-flow boundary layer, while the contribution due to the elongated structures scales linearly with a simple function of the maximum tip velocity and oscillation period for the largest disc diameter tested, a result suggested by the Rosenblat flow solution. A brief discussion on the future applicability of the oscillating-disc technique is also presented.


1994 ◽  
Vol 38 (02) ◽  
pp. 133-136
Author(s):  
Jason C. Reed

A summary of experiments using grooved surfaces to trap and hold (via surface tension forces) an injected airstream in a low-speed (1.25 to 5 m/s) water flow is presented. The purpose of creating a low-volume near-wall air sheet is to possibly enhance the efficiency of current air injection drag reduction methods in terms of unit gas volume per % drag reduction. Flow visualization and preliminary quantitative data are included for a laminar channel flow, a disturbed laminar channel flow, and a flat plate turbulent boundary-layer flow. A stable convecting low-volume, near-wall gas film is produced in several instances. Groove dimension and the presence of anti-wetting surface coatings are shown to greatly affect the formation and stability of the gas sheet. Deeper, narrower grooves, anti-wetting surface coatings, and shallow-angle gas injection increase the stability of the attached gas layer. Convected disturbances are shown to increase the interfacial instability of the attached sheet. It is not known if a gas sheet can be held under a turbulent boundary layer over 3 m/s, or if the groove sizes needed to do so would become too small to be of use in a practical high-speed hydrodynamic flow.


2003 ◽  
Author(s):  
Paul Dimotakis ◽  
Patrick Diamond ◽  
Freeman Dyson ◽  
David Hammer ◽  
Jonathan Katz

Sign in / Sign up

Export Citation Format

Share Document