tip velocity
Recently Published Documents


TOTAL DOCUMENTS

96
(FIVE YEARS 11)

H-INDEX

19
(FIVE YEARS 1)

2021 ◽  
Vol 2132 (1) ◽  
pp. 012051
Author(s):  
Bingzhe Wang ◽  
Liyun Xie ◽  
Zhounan Guo

Abstract In order to study the influence of explosive type on the rod jet formation of energetic composite liner, the process of rod jet formation of this liner is numerically simulated by using finite element analysis and multi-material Euler algorithm. In this paper, the rod jet formation and penetration performance of the liner are studied and analyzed by combining relevant theories and simulation calculation, and the influence law of explosive type on rod jet formation and target penetration thickness is obtained. In this paper, the stability of rod jet formed by this kind of model is verified by numerical simulation, and the influence law of explosive type on rod jet is obtained by simulating the collected data such as effective mass, tip velocity and jet length of rod jet and the equivalent target penetration thickness obtained by the quasi steady incompressible ideal fluid theory of jet penetration; it provides data support and design basis for the application of new explosives in energetic composite liner in the next stage.


Author(s):  
Navinder Singh Bhamra ◽  
Kiran Vijayan ◽  
Vishwanath Nagarajan

Underwater propulsion of fishes have inspired many biomimetic structures. Generally, the bio-inspired structures mimics the flapping behaviour of various control surfaces/fins in fishes. The present study mimics the flapping behaviour using a piezoelectric structure. The system is analyzed as a fluid structure interaction problem. The dynamic behaviour of a cantilever beam surrounded by a bounded fluid domain open at top is analyzed. The structure is modeled as a Euler-Bernoulli beam and the fluid is modeled using potential flow theory. The influence of domain size on the wet natural frequencies of the system was analyzed. The dimensions of the fluid domain wherein the variation in wet natural frequencies becomes insensitive were determined. The influence of added mass on the wet natural frequency was parametrized based on Non-dimensional Added Mass Increment (NAVMI) factor. The NAVMI factors were observed to be relatively higher for lower wet modes of the structure. Therefore, the peizo-beam was analyzed by exciting the lower wet modes. The thrust generated at different excitation frequencies were determined using tip velocity of the cantilever beam following Lighthill’s analogy. The results from the study indicated that higher propulsive thrust was produced for lower modes of excitation of the structure.


Author(s):  
Dmitri V. Alexandrov ◽  
Peter K. Galenko

This review article summarizes the main outcomes following from recently developed theories of stable dendritic growth in undercooled one-component and binary melts. The nonlinear heat and mass transfer mechanisms that control the crystal growth process are connected with hydrodynamic flows (forced and natural convection), as well as with the non-local diffusion transport of dissolved impurities in the undercooled liquid phase. The main conclusions following from stability analysis, solvability and selection theories are presented. The sharp interface model and stability criteria for various crystallization conditions and crystalline symmetries met in actual practice are formulated and discussed. The review is also focused on the determination of the main process parameters—the tip velocity and diameter of dendritic crystals as functions of the melt undercooling, which define the structural states and transitions in materials science (e.g. monocrystalline-polycrystalline structures). Selection criteria of stable dendritic growth mode for conductive and convective heat and mass fluxes at the crystal surface are stitched together into a single criterion valid for an arbitrary undercooling. This article is part of the theme issue ‘Transport phenomena in complex systems (part 1)’.


2021 ◽  
Vol 12 ◽  
Author(s):  
Camilla L. Fitjar ◽  
Vibeke Rønneberg ◽  
Guido Nottbusch ◽  
Mark Torrance

Skilled handwriting of single letters is associated not only with a neat final product but also with fluent pen-movement, characterized by a smooth pen-tip velocity profile. Our study explored fluency when writing single letters in children who were just beginning to learn to handwrite, and the extent to which this was predicted by the children’s pen-control ability and by their letter knowledge. 176 Norwegian children formed letters by copying and from dictation (i.e., in response to hearing letter sounds). Performance on these tasks was assessed in terms of the counts of velocity inversions as the children produced sub-letter features that would be produced by competent handwriters as a single, smooth (ballistic) action. We found that there was considerable variation in these measures across writers, even when producing well-formed letters. Children also copied unfamiliar symbols, completed various pen-control tasks (drawing lines, circles, garlands, and figure eights), and tasks that assessed knowledge of letter sounds and shapes. After controlling for pen-control ability, pen-movement fluency was affected by letter knowledge (specifically children’s performance on a task that required selecting graphemes on the basis of their sound). This was the case when children retrieved letter forms from dictated letter sounds, but also when directly copying letters and, unexpectedly, when copying unfamiliar symbols. These findings suggest that familiarity with a letter affects movement fluency during letter production but may also point towards a more general ability to process new letter-like symbols in children with good letter knowledge.


2021 ◽  
Vol 143 (5) ◽  
Author(s):  
Ben Mohankumar ◽  
Cesare A. Hall ◽  
Mark J. Wilson

Abstract Fans that are designed to maintain thrust at the high angle of attack (AOA) flight condition could exploit the cruise fuel burn benefit of a shorter intake design. This article considers how the fan rotor radial pressure ratio distribution and tip velocity triangle can be designed to improve thrust when coupled to a short intake operating at high AOA. Two AOA values are investigated using unsteady computational fluid dynamics: 20 deg (attached flow) and 35 deg (separated flow). Thrust at high AOA is governed by three key loss and work input mechanisms. (i) Rotor choking loss: flow is accelerated around the intake bottom lip and enters the rotor with high Mach numbers. Fans designed with a tip-high radial pressure ratio distribution reduced choking loss with a separated intake compared to a mid-high design, particularly when the tip velocity triangle was designed with high diffusion instead of high camber. (ii) Rotor–separation interaction loss: the rotor ingests low mass flow when operating inside the separation and the casing boundary layer separates. High diffusion tip designs strengthened the casing separation, but this penalty did not outweigh improved choking loss. (iii) Work input in radial flows: high AOA generates strong radial flows through the rotor, which alter both the amount and the way work is imparted on the flow. Fans designed with a mid-high radial pressure ratio distribution imparted high work on streamlines migrating toward the hub. Consolidating these findings, we propose two design philosophies for improved thrust at high AOA: high work (mid-high radial pressure ratio distribution) or low loss (tip-high radial pressure ratio distribution with high diffusion tip velocity triangle).


2020 ◽  
Vol 175 ◽  
pp. 163-173
Author(s):  
Seyed Amin Nabavizadeh ◽  
Ryan Lenart ◽  
Mohsen Eshraghi ◽  
Sergio D. Felicelli ◽  
Surendra N. Tewari ◽  
...  

Author(s):  
Ben Mohankumar ◽  
Cesare A. Hall ◽  
Mark J. Wilson

Abstract Future turbofan engines seek shorter intakes to reduce the cruise fuel burn of a low pressure ratio, large diameter fan. However, shorter intakes increase the level of flow distortion entering the rotor when the aircraft angle of attack (AOA) is high, reducing thrust when critically needed. This paper considers how the fan rotor radial pressure ratio distribution and tip velocity triangle can be designed to improve thrust at high AOA. Full annulus, unsteady CFD is performed on three rotor designs coupled to a short intake. We show that rotor design for high AOA should be guided by three flow mechanisms. Mechanism i) is caused by high Mach number flow over the bottom intake lip, which chokes the rotor leading to high loss. Mechanism ii) is the loss generation in the rotor tip as it passes through an intake separation. Mechanism iii) shows radial flows through the rotor change both the amount and the way work is imparted on the flow. Two comparable rotor design philosophies for high thrust are proposed; high work or low loss. Rotors designed to a mid-high radial pressure ratio distribution impart high work on streamlines that migrate radially towards the hub and exit the rotor at highly cambered sections. Meanwhile, tip-high designs reduce choking losses in the midspan when operating with a separated intake, particularly when the tip velocity triangle is designed to high axial velocity diffusion over high camber. However, such designs suffer with higher tip losses after exiting an intake separation.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4819 ◽  
Author(s):  
Kihyun Kim ◽  
Ocktaeck Lim

This study investigated gasoline–biodiesel blended fuel (GB) subjected to a fuel spray development process on macroscopic and microscopic scales. The four tested fuels were neat gasoline and gasoline containing biodiesel (5%, 20%, and 40% by volume) at three different ratios. The initial spray near the nozzle revealed that the spray penetration and spray tip velocity both decreased with decreasing biodiesel blending ratio. In addition, the different spray tip velocities at the start of spraying result in different atomization regimes between the fuels. The GB fuels with a low biodiesel blending ratio were disadvantaged in terms of spray atomization due to their lower spray penetration and tip velocity. The macroscopic spray penetration changes were similar to those observed in the microscopic spray. The fuel with the lower biodiesel blending ratio had a larger spray cone angle, indicating increased radial spray dispersion.


2020 ◽  
Vol 6 (5) ◽  
pp. 31 ◽  
Author(s):  
Karyna Isaieva ◽  
Yves Laprie ◽  
Freddy Odille ◽  
Ioannis K. Douros ◽  
Jacques Felblinger ◽  
...  

We evaluate velocity of the tongue tip with magnetic resonance imaging (MRI) using two independent approaches. The first one consists in acquisition with a real-time technique in the mid-sagittal plane. Tracking of the tongue tip manually and with a computer vision method allows its trajectory to be found and the velocity to be calculated as the derivative of the coordinate. We also propose to use another approach—phase contrast MRI—which enables velocities of the moving tissues to be measured directly. We recorded the sound simultaneously with the MR acquisition which enabled us to make conclusions regarding the relation between the movements and the sound. We acquired the data from two French-speaking subjects articulating /tata/. The results of both methods are in qualitative agreement and are consistent with other reviewer techniques used for evaluation of the tongue tip velocity.


2020 ◽  
Vol 1 (6) ◽  
pp. 13-27
Author(s):  
Nguyen Thin Quynh ◽  
◽  
A.Y. Dunin ◽  

The paper presents the simulation result of the influence of the ratio of the diameter Dкс of the combustion chamber to its depth hкс and boost pressure рк on the characteristics of a 1ChN 12/13 single-cylinder engine with an injection pressure of 300 MPa at a crankshaft speed of 1400 min-1. The simulation was performed with Dкс/hкс from 3.4 to 10.0, and рк from 0.15 to 0.45 MPa. The re-sults show that the engine achieves the best performance when nitrogen oxides NOx in the exhaust gases decreases at Dкс/hкс= (7.8 ÷ 10), and the pressure рк from 0.25 to 0.35 MPa. At рк= 0.35 MPa, Dкс/hкс= 10, the indicated power increases by 7.1%. NOx reduces by 68% but soot, CO and CH in-crease by 4.5, 9.5, and 2.2 times, respectively. The results also show the impact of the boost pressure рк on spray characteristics. The boost pressure рк increases, the penetration, and the tip velocity decrease, but the spray angle changes a little. While the combustion chamber diameter changes, the penetration, and the spray angle change a little, and the tip velocity varies much. The boost pressure рк is a means of redistributing the amount of fuel burned in the jet and near the wall of the combus-tion chamber. With an increase in the boost pressure, the proportion of fuel that burns at the begin-ning of the combustion process under conditions of volumetric mixing increases, while at the end of the combustion process, a large concentration of fuel is located near the combustion chamber wall.


Sign in / Sign up

Export Citation Format

Share Document