Study on Flow Boiling Heat Transfer and Two-Phase Flow Pressure Drop in Flat Mini-Channel

Author(s):  
Yasuo Koizumi ◽  
Hiroyasu Ohtake ◽  
Ken Sato

Flow and the heat transfer characteristics of boiling two-phase flow of water in flat mini-rectangular-channels were examined. The cross-sections tested were 1.0×10 to 0.2×10 mm and the flow channel length was 250 mm. Single phase flow pressure drop was well expressed by the method for the usual size in the present experimental range. Boiling heat transfer of 0.5 mm high and 10 mm wide cross section was similar to that of the usual size. However, that 0.2 mm high and 10 mm wide cross section was a little different from that of the usual size. An increase in the heat flux after the onset of nucleate boiling on the boiling curve is milder than that of the usual size. Thus, the critical heat flux was lower than that of the usual size. Flow patterns observed in the present experiments were a little different from the Baker flow pattern chart. Consistent agreement was not obtained between the present results of the two-phase flow pressure drop and predictions by the methods for the usual size and also for a mini tube. Subcooled boiling was observed widely in the test section. This made it difficult to determine the local conditions such as quality that was necessary to calculate the Lockhart-Martinelli parameter for the two-phase flow pressure drop prediction.

Author(s):  
S. G. Singh ◽  
S. P. Duttagupta ◽  
A. M. Kulkarni ◽  
B. P. Puranik ◽  
A. Agrawal

With the reduction in size of electronic devices, the problem of efficient cooling is becoming more and more severe. Boiling heat transfer in microchannels is fast emerging as a promising solution to the problem. In the present work, microchannels were fabricated on a silicon wafer. A chrome-gold micro-heater was integrated and characterized on the other side of the wafer. The change in resistance of the micro-heater in the temperature range of 20 °C – 120 °C was found to be within 10%. Deionized water was used as working fluid in microchannel. The single-phase pressure drop across the microchannel was found to increase linearly with increasing flow rate in confirmation with conventional laminar flow theory. Also, the pressure drop decreases with an increase in heat input due to a reduction in viscosity. The study was extended to two phase flow with flow rate and heat flux as the control parameters. The onset of two phase flow, at a given heat flux, with a decrease in flow rate, can be identified by the departure of linear pressure drop to non-linearity; this point was also confirmed through visual observation. In two-phase region of flow, pressure drop was found to increase initially, passes through a maximum and then decreases, with a decrease in flow rate. The experiments are performed for several heat fluxes. Both the onset of two phase and maximum pressure drop in the two phase region shifts to higher flow rates with an increase in heat input. Such detailed experimental results seem to be missing from the literature and are expected to be useful for modeling of boiling heat transfer in microchannels. Another pertinent observation is presence of instability in two-phase flow. It was found that at higher flow rate and heat flux instability in two-phase flow was more. An attempt to record these instabilities was made and preliminary data on their frequency will be presented. This study may help to choose suitable operating conditions for a microchannel heat sink for use in electronics cooling.


2016 ◽  
Vol 819 ◽  
pp. 371-375
Author(s):  
Agus Sunjarianto Pamitran ◽  
Sentot Novianto ◽  
T.A. Simanjuntak ◽  
Nasruddin ◽  
Muhammad Idrus Alhamid

This study experimentally investigated two-phase flow pressure drop of propane as refrigerant in horizontal small tube. Inner diameter and length of the tube were 7.6 mm and 1.07 m, respectively. In order to get pressure drop data, the experiment was conducted in various conditions of 10 to 25 kW m-2 heat flux, 200 to 628 kg m-2 s-1 mass flux, and 4.0 to 11.7°C saturation temperature. This study clearly showed the effect of heat flux, mass flux, and saturation temperature on the pressure drop of propane. This study also investigated which fluid properties gave higher effect on the frictional pressure drop due to its change over the process based on the recent experiment data. The existing pressure drop correlations were evaluated against the experimental result.


Sign in / Sign up

Export Citation Format

Share Document