Design of Decoupled Mechanical Shim Control System for a Generation III+ Pressurized Water Reactor Based on Feedforward Compensation and Multimodel Approach

Author(s):  
Pengfei Wang ◽  
Xinyu Wei ◽  
Fuyu Zhao

The advanced Mechanical Shim (MSHIM) core control strategy employs two separate and independent control rod banks, namely the MSHIM control banks (M-banks) and axial offset (AO) control bank (AO-bank), for automatic reactivity/temperature and axial power distribution control respectively. The M-banks and AO-bank are independently controlled by two closed-loop controllers called the coolant average temperature (Tavg) controller and AO controller. Since the movement of M-banks and AO-bank can both affect the Tavg and AO, the Tavg controller is coupled with the AO controller. In order to avoid the interference between the two controllers, the MSHIM control system adopts an interlock design between them to avoid the simultaneous movement of the M-banks and AO-bank and make sure the priority of the M-bank movement. This design can enhance the stability of the MSHIM control system. However, the control performance is degraded at the same time. In the present study, the feedforward compensation decoupling method and multimodel approach are used to eliminate the coupling effect between the two controllers in the MSHIM control system during a wide range of power maneuvers. A multiple feedforward compensation system is designed with integration of feedforward compensators for the Tavg and AO controllers at five power levels using the multimodel approach. By implementing it in the MSHIM control system, the interlock between the M-banks and AO-bank can be released to realize the independent and decoupled control between Tavg and AO. The effectiveness of the decoupled MSHIM control system is verified by comparing its control performance with that of the original MSHIM control system during typical load change transients of the AP1000 reactor. The obtained results show that superior and decoupled control of Tavg and AO can be achieved with the proposed decoupled MSHIM control system.

Author(s):  
Peiwei Sun ◽  
Chong Wang

Small Pressurized Water Reactors (SPWR) are different from those of the commercial large Pressurized Water Reactors (PWRs). There are no hot legs and cold legs between the reactor core and the steam generators like in the PWR. The coolant inventory is in a large amount. The inertia of the coolant is large and it takes a long time for the primary system to respond to disturbances. Once-through steam generator is adopted and its water inventory is small. It is very sensitive to disturbances. These unique characteristics challenge the control system design of an SPWR. Relap5 is used to model an SPWR. In the reactor power control system, both the reactor power and the coolant average temperature are regulated by the control rod reactivity. In the feedwater flow control system, the coordination between the reactor and the turbine is considered and coolant average temperature is adopted as one measurable disturbance to balance them. The coolant pressure is adjusted based on the heaters and spray in the pressurizer. The water level in the pressurizer is controlled by the charging flow. Transient simulations are carried out to evaluate the control system performance. When the reactor is perturbed, the reactor can be stabilized under the control system.


Author(s):  
Anatoly Blanovsky

A design concept and characteristics for an epithermal breeder controlled by variable feedback and external neutron source intensity are presented. By replacing the control rods with neutron sources, we could maintain good power distribution and perform radioactive waste burning in high flux subcritical reactors (HFSR) that have primary system size, power density and cost comparable to a pressurized water reactor (PWR). Another approach for actinide transmutation is a molten salt subcritical reactor proposed by Russian scientists. To increase neutron source intensity the HFSR is divided into two zones: a booster and a blanket with solid and liquid fuels. A neutron gate (absorber and moderator) imposed between two zones permits fast neutrons from the booster to flow to the blanket. Neutrons moving in the reverse direction are moderated and absorbed in the absorber zone. In the HFSR, neptunium-plutonium fuel is circulated in the booster and blanket, and americium-curium in the absorber zone and outer reflector. Use of a liquid actinide fuel permits transport of the delayed-neutron emitters from the blanket to the booster, where they can provide additional neutrons (source-dominated mode) or all the necessary excitation without an external neutron source (self-amplifying mode). With a blanket neutron multiplication gain of 20 and a booster gain of 50, an external neutron source rate of at least 1015 n/s (0.7MW D-T or 2.5MW electron beam power) is needed to control the HFSR that produces 300MWt. Most of the power could be generated in the blanket that burns about 100 kg of actinides a year. The analysis takes into consideration a wide range of HFSR design aspects including the wave model of observed relativistic phenomena, plant seismic diagnostics, fission electric cells (FEC) with a multistage collector (anode) and layered cathode.


2020 ◽  
Vol 44 (8) ◽  
pp. 6463-6482
Author(s):  
Jaerim Jang ◽  
Jiwon Choe ◽  
Sooyoung Choi ◽  
Matthieu Lemaire ◽  
Deokjung Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document