Reactor Core
Recently Published Documents





Kerntechnik ◽  
2022 ◽  
Vol 0 (0) ◽  
Jinfeng Huang ◽  
Jiaming Jiang

Abstract For post-Fukushima nuclear power plants, there has been interested in accident-tolerant fuel (ATF) since it has better tolerant in the event of a severe accident. The fully ceramic microencapsulated (FCM) fuel is one kind of the ATF materials. In this study, the small modular pressurized water reactor (PWR) loading with FCM fuels was investigated, and the modified Constant Axial shape of Neutron flux, nuclide number densities and power shape During Life of Energy producing reactor (CANDLE) burnup strategy was successfully applied to such compact reactor core. To obtain ideal CANDLE shape, it’s necessary to set the infinity or enough length of the core height, but that is impossible for small compact core setting infinity or enough length of the core height. Due to the compact and finite core, the equilibrium state can only be maintained short periods and is not obvious, other than infinitely long active core to reach the long equilibrium state for ideal CANDLE. Consequently, the modified CANDLE shape would be presented. The approximate characteristics of CANDLE burnup are observed in the finite and compact core, and the power density and fuel burnup are selected as main characteristic of modified CANDLE burnup. In this study, firstly, lots of optimization schemes were discussed, and one of optimization schemes was chosen at last to demonstrate the modified CANDLE burnup strategy. Secondly, for chosen compact small rector core, the modified CANDLE burnup strategy is applied and presented. Consequently, the new characteristics of this reactor core can be discovered both in ignition region and in fertile region. The results show that application of CANDLE burnup strategy to small modular PWR loading with FCM fuels suppresses the excess reactivity effectively and reduces the risk of small PWR reactivity-induced accidents during the whole core life, which makes the reactor control more safety and simple.

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 113
Laurent Pantera ◽  
Petr Stulík ◽  
Antoni Vidal-Ferràndiz ◽  
Amanda Carreño ◽  
Damián Ginestar ◽  

This work outlines an approach for localizing anomalies in nuclear reactor cores during their steady state operation, employing deep, one-dimensional, convolutional neural networks. Anomalies are characterized by the application of perturbation diagnostic techniques, based on the analysis of the so-called “neutron-noise” signals: that is, fluctuations of the neutron flux around the mean value observed in a steady-state power level. The proposed methodology is comprised of three steps: initially, certain reactor core perturbations scenarios are simulated in software, creating the respective perturbation datasets, which are specific to a given reactor geometry; then, the said datasets are used to train deep learning models that learn to identify and locate the given perturbations within the nuclear reactor core; lastly, the models are tested on actual plant measurements. The overall methodology is validated on hexagonal, pre-Konvoi, pressurized water, and VVER-1000 type nuclear reactors. The simulated data are generated by the FEMFFUSION code, which is extended in order to deal with the hexagonal geometry in the time and frequency domains. The examined perturbations are absorbers of variable strength, and the trained models are tested on actual plant data acquired by the in-core detectors of the Temelín VVER-1000 Power Plant in the Czech Republic. The whole approach is realized in the framework of Euratom’s CORTEX project.

Md Rezouanul Kabir ◽  
Morozov A.V. ◽  
Md Saif Kabir

The mechanisms of boric acid mass transfer in a VVER-1200 reactor core are studied in this work in the event of a major circulatory pipeline rupture and loss of all AC power. The VVER-1200's passive core cooling technology is made up of two levels of hydro accumulators. They use boric acid solution with a concentration of 16 g H3BO3/kg H2O to control the reactivity. Because of the long duration of the accident process, the coolant with high boron content starts boiling and steam with low concentration of boric acid departs the core. So, conditions could arise in the reactor for possible accumulation and subsequent crystallization of boric acid, causing the core heat removal process to deteriorate. Calculations were carried out to estimate the likelihood of H3BO3 build-up and subsequent crystallization in the core of the VVER reactor. According to the calculations, during emergency the boric acid concentration in the reactor core is 0.153 kg/ kg and 0.158 kg/kg in both the events of solubility of steam and without solubility of steam respectively and it does not exceed the solubility limit which is about 0.415 kg/kg at water saturation temperature. No precipitation of boric acid occurs within this time during the whole emergency process. Therefore, findings of the study can be used to verify whether the process of decay heat removal is affected or not.

2021 ◽  
Vol 7 (4) ◽  
pp. 311-318
Artavazd M. Sujyan ◽  
Viktor I. Deev ◽  
Vladimir S. Kharitonov

The paper presents a review of modern studies on the potential types of coolant flow instabilities in the supercritical water reactor core. These instabilities have a negative impact on the operational safety of nuclear power plants. Despite the impressive number of computational works devoted to this topic, there still remain unresolved problems. The main disadvantages of the models are associated with the use of one simulated channel instead of a system of two or more parallel channels, the lack consideration for neutronic feedbacks, and the problem of choosing the design ratios for the heat transfer coefficient and hydraulic resistance coefficient under conditions of supercritical water flow. For this reason, it was decided to conduct an analysis that will make it possible to highlight the indicated problems and, on their basis, to formulate general requirements for a model of a nuclear reactor with a light-water supercritical pressure coolant. Consideration is also given to the features of the coolant flow stability in the supercritical water reactor core. In conclusion, the authors note the importance of further computational work using complex models of neutronic thermal-hydraulic stability built on the basis of modern achievements in the field of neutron physics and thermal physics.

Kerntechnik ◽  
2021 ◽  
Vol 86 (6) ◽  
pp. 419-436
R. Kianpour ◽  
G. R. Ansarifar

Abstract The purpose of this study is to display the neutronic simulation of nanofluid application to reactor core. The variations of VVER-1000 nuclear reactor primary neutronic parameters are investigated by using different volume fraction of nanofluid as coolant. The effect of using nanofluid as coolant on reactor dynamical parameters which play an important role in the dynamical analysis of the reactor and safety core is calculated. In this paper coolant and fuel temperature reactivity coefficients in a VVER-1000 nuclear reactor with nanofluid as a coolant are calculated by using various volume fractions and different sizes of TiO2 (Titania) nanoparticle. For do this, firstly the equivalent cell of the hexagonal fuel rod and the surrounding coolant nanofluid is simulated. Then the thermal hydraulic calculations are performed at different volume fractions and sizes of the nanoparticle. Then, using WIMS and CITATION codes, the reactor core is simulated and the effect of coolant and fuel temperature changes on the effective multiplication factor is calculated. For doing optimization, an artificial neural network is trained in MATLAB using the observed data. The different sizes and various volume fractions are inputs, fuel and coolant temperature reactivity coefficients are outputs. The optimal size and volume fraction is determined using the neural network by implementing the genetic algorithms. In the optimization, volume fraction of 7% and size 77 nm are optimal values.

2021 ◽  
Vol 927 (1) ◽  
pp. 012018
Nicholas Sidharta ◽  
Almanzo Arjuna

Abstract Pebble bed reactor with a once-through-then-out fuelling scheme has the advantage of simplifying the refueling system. However, the core upper-level power density is relatively higher than the bottom, producing an asymmetric core axial power distribution. Several burnable poison (BP) configurations are used to flatten the peak power density and improve power distribution while suppressing the excess core reactivity at the beginning of the burnup cycle. This study uses HTR-PM, China’s pebble bed reactor core, to simulate several burnable poison (BP) configurations. Serpent 2 coupled with Octave and a discrete element method simulation is used to model and simulate the pebble bed reactor core. It is found that erbium needs a large volumetric fraction in either QUADRISO or distributed BP to perform well. On the other hand, gadolinium and boron need a smaller volumetric fraction but perform worse in radial power distribution criteria in the fuel sphere. This study aims to verify the effect of BP added fuel pebbles on an OTTO refueling scheme HTR-PM core axial power distribution and excess reactivity.

Nukleonika ◽  
2021 ◽  
Vol 66 (4) ◽  
pp. 133-138
Mikołaj Oettingen ◽  
Jerzy Cetnar

Abstract The volumetric homogenization method for the simplified modelling of modular high-temperature gas-cooled reactor core with thorium-uranium fuel is presented in the paper. The method significantly reduces the complexity of the 3D numerical model. Hence, the computation time associated with the time-consuming Monte Carlo modelling of neutron transport is considerably reduced. Example results comprise the time evolutions of the effective neutron multiplication factor and fissionable isotopes (233U, 235U, 239Pu, 241Pu) for a few configurations of the initial reactor core.

Sign in / Sign up

Export Citation Format

Share Document