Unsteady RANS Simulation of Turbulent Flow and Heat Transfer in a Channel With Periodic Array of Cubic Pin-Fins

Author(s):  
A. K. Saha ◽  
Sumanta Acharya

An unsteady three-dimensional numerical study is performed to explore flow and heat transfer in a periodic array of cubic pin-fins housed inside a narrow channel. Short cubic pin-fins are arranged in an inline pattern with both streamwise and transverse periodicity set to 2.5 times the pin-fin dimension. Calculations are done in the turbulent flow regime for Reynolds numbers in the range of 7090–13280. The unsteady Reynolds-Averaged Navier Stokes (RANS) and energy equations are solved using higher order temporal and spatial discretization schemes. An unsteady k-ε turbulence model is employed to model the unresolved turbulence fluctuations. The unsteady RANS results are able to resolve discrete large scale spatial and temporal fluctuations in the flow. These fluctuations appear to mostly influence the flow in the region between the cubic fins, but are linked to low amplitude oscillations in the outer flow. Three thermal boundary conditions are studied: (1) only channel wall heated (2) only pin-fins heated and (3) both channel wall and pin-fins heated. The overall heat transfer enhancement is about 1.8–2.0 times the heat transfer from a smooth duct flow. The heat transfer from pin-fins is found to be 5–9% higher than that from the top wall at low Reynolds number (7090 and 8900), while it is of comparable magnitude at higher Reynolds number (=13280).

2013 ◽  
Vol 136 (1) ◽  
Author(s):  
Gongnan Xie ◽  
Jian Liu ◽  
Weihong Zhang ◽  
Giulio Lorenzini ◽  
Cesare Biserni

Repeated ribs are often employed in the midsection of internal cooling passages of turbine blades to augment the heat transfer by air flowing through the internal ribbed passages. Though the research of flow structure and augmented heat transfer inside various ribbed passages has been well conducted, previous works mostly paid much attention to the influence of rib topology (height-to-pitch, blockage ratio, skew angle, rib shape). The possible problem involved in the usage of ribs (especially with larger blockage ratios) is pressure loss penalty. Thus, in this case, the design of truncated ribs whose length is less than the passage width might fit the specific cooling requirements when pressure loss is critically considered. A numerical study of truncated ribs on turbulent flow and heat transfer inside a passage of a gas turbine blade is performed when the inlet Reynolds number ranges from 8000 to 24,000. Different truncation ratio (truncated-length to passage-width) rib geometries are designed and then the effect of truncation ratio on the pressure drop and heat transfer enhancement is observed under the condition of constant total length. The overall performance characteristics of various truncated rib passages are also compared. It is found that the heated face with a rib that is truncated 12% in length in the center (case A) has the highest heat transfer coefficient, while the heated face with a rib that is truncated 4% at three locations over its length, in the center and two sides (case D), has a reduced pressure loss compared with passages of other designs and provides the lowest friction factors. Although case A shows larger heat transfer augmentation, case D can be promisingly used to augment side-wall heat transfer when the pressure loss is considered and the Reynolds number is relatively large.


Author(s):  
Peng Zhang ◽  
Yu Rao ◽  
Yanlin Li

This paper presents a numerical study on turbulent flow and heat transfer in the channels with a novel hybrid cooling structure with miniature V-shaped ribs and dimples on one wall. The heat transfer characteristics, pressure loss and turbulent flow structures in the channels with the rib-dimples with three different rib heights of 0.6 mm, 1.0 mm and 1.5 mm are obtained for the Reynolds numbers ranging from 18,700 to 60,000 by numerical simulations, which are also compared with counterpart of a pure dimpled and pure V ribbed channel. The results show that the overall Nusselt numbers of the V rib-dimple channel with the rib height of 1.5 mm is up to 70% higher than that of the channels with pure dimples. The numerical simulations show that the arrangement of the miniature V rib upstream each dimple induces complex secondary flow near the wall and generates downwashing vortices, which intensifies the flow mixing and turbulent kinetic energy in the dimple, resulting in significant improvement in heat transfer enhancement and uniformness.


2006 ◽  
Vol 129 (6) ◽  
pp. 685-696 ◽  
Author(s):  
Guoguang Su ◽  
Hamn-Ching Chen ◽  
Je-Chin Han

Computations with multi-block chimera grids were performed to study the three-dimensional turbulent flow and heat transfer in a rotating rectangular channel with staggered arrays of pin-fins. The channel aspect ratio (AR) is 4:1, the pin length to diameter ratio (H∕D) is 2.0, and the pin spacing to diameter ratio is 2.0 in both the stream-wise (S1∕D) and span-wise (S2∕D) directions. A total of six calculations have been performed with various combinations of rotation number, Reynolds number, and coolant-to-wall density ratio. The rotation number and inlet coolant-to-wall density ratio varied from 0.0 to 0.28 and from 0.122 to 0.20, respectively, while the Reynolds number varied from 10,000 to 100,000. For the rotating cases, the rectangular channel was oriented at 150deg with respect to the plane of rotation to be consistent with the configuration of the gas turbine blade. A Reynolds-averaged Navier-Stokes (RANS) method was employed in conjunction with a near-wall second-moment turbulence closure for detailed predictions of mean velocity, mean temperature, and heat transfer coefficient distributions.


Sign in / Sign up

Export Citation Format

Share Document