A Dynamic Model for a Closed-Loop Continuous Energy System Using Solar Power

Author(s):  
Bradford M. Culwell ◽  
Shripad T. Revankar ◽  
Radhika Kotha

One key advantage of solar power over more traditional power sources is its modular nature, allowing it to be used in remote locations or as a supplementary source of power. Recent studies show fuel cell technology as a good means of providing a continuous supply of electricity from a solar array, eliminating drawbacks caused by solar energy's cyclical nature. The high power density of such a system makes it ideal for use in areas such as unmanned aerial vehicles and space exploration. Due to the complexity and relatively high initial cost of current fuel cells, however, optimization of such a system is critical. This paper examines a dynamic model of a solar regenerative fuel cell system built in MATLAB Simulink. The system uses a polymer electrolyte membrane (PEM) fuel cell, running on stored hydrogen and oxygen, to produce power when solar energy is insufficient. It uses a PEM based electrolyzer to produce hydrogen and oxygen from water when solar energy exceeds demand. The mathematical model includes modules for each component, including solar cells, fuel cell, electrolyzer, and auxiliary systems. Models were built based on fundamental physics to the extent practical. The individual modules were first tested for their performances and then were integrated to form an integrated solar powered regenerative fuel cell system. The simulations were carried out for a day and night cycle and the results show that the closed loop system can be operated providing continuous supply of electric power.

2021 ◽  
pp. 138921
Author(s):  
Sadhasivam Thangarasu ◽  
Ho-Young Jung ◽  
Jae-Hyung Wee ◽  
Yoong Ahm Kim ◽  
Sung-Hee Roh

1961 ◽  
Author(s):  
W.E. Mckee ◽  
E. Findl ◽  
J.D. Margerum ◽  
W.B. Lee

Author(s):  
Miriam Kemm ◽  
Azra Selimovic ◽  
Mohsen Assadi

This paper focuses on the transient behavior of a solid oxide fuel cell system used for stationary power production. Dynamic modelling is applied to identify the characteristic time scales of the system components when introducing a disturbance in operational parameters of the system. The information on the response of the system may be used to specify the control loops needed to manage the changes with respect to safe component operation. The commercial process modelling tool gPROMS is used to perform the system simulations. The component library of the tool is completed with dynamic models of a fuel cell stack and a prereformer. The other components are modelled for steady state operation. For the fuel cell a detailed dynamic model is obtained by writing the constitutive laws for heat transfer in the solid part of the cell and conservation of heat and mass in the air and fuel channels. Comprehensive representation of resistive cell losses, reaction kinetics for the reforming and heat conduction through the solid part of the cell is also included in the model. The prereformer is described as a dynamic pseudo-homogeneous one-dimensional tubular reactor accounting for methane steam reforming and water-gas shift reaction. The differences in the transient behavior of the system components and their interaction are investigated under load changes and feed disturbances.


Sign in / Sign up

Export Citation Format

Share Document