Integration of Catalytic Combustion and Heat Recovery With Meso-Scale Solid Oxide Fuel Cell System

Author(s):  
Christopher J. Maxey ◽  
Gregory S. Jackson ◽  
Seyed-Abdolreza Seyed Reihani ◽  
Steven C. Decaluwe ◽  
Siddharth Patel ◽  
...  

To facilitate high-power density operation of a meso-scale solid oxide fuel cell (SOFC) system, fuel processing and anode exhaust catalytic combustor with waste heat recovery are critical components. An integrated modeling study of a catalytic combustor with a solid oxide fuel cell and a catalytic partial oxidation (CPOx) reactor indicates critical aspects of the butane-fueled system design in order to ensure stable operation of the SOFC as well as the combustor and CPOx reactor. The modeled system consists of: 1) a Rh-coated ceramic foam catalytic partial oxidation reactor, 2) a SOFC with a Ni/YSZ structural anode, a dense YSZ electrolyte, and a LSM/YSZ cathode layer, and 3) a Pt-coated anode exhaust combustor with waste heat recovery. Model results for a system designed to produce < 30 W electric power from n-butane show how the design of the inlet-air cooled catalytic combustor can maximize combustion efficiency of the anode exhaust and heat recovery to the system inlet air flow. The model also shows the need to minimize heat loss in the air flow passages in order to maintain stable SOFC operation at 700 °C or higher. There is a strong sensitivity of the system operation to the SOFC operating voltage as well as the overall air to fuel ratio, and these sensitivities place important bounds on the range of operating conditions.




2012 ◽  
Vol 622-623 ◽  
pp. 1162-1167
Author(s):  
Han Fei Tuo

In this study, energetic based fluid selection for a solid oxide fuel cell-organic rankine combined power system is investigated. 9 dry organic fluids with varied critical temperatures are chosen and their corresponding ORC cycle performances are evaluated at different turbine inlet temperatures and exhaust gas temperature (waste heat source) from the upper cycle. It is found that actual ORC cycle efficiency for each fluid strongly depends on the waste heat recovery performance of the heat recovery vapor generator. Exhaust gas temperature determines the optimal fluid which yields the highest efficiency.



Author(s):  
Giulio Vialetto ◽  
Marco Noro ◽  
Masoud Rokni

In this paper, a new heat recovery for a microcogeneration system based on solid oxide fuel cell and air source heat pump (HP) is presented with the main goal of improving efficiency on energy conversion for a residential building. The novelty of the research work is that exhaust gases after the fuel cell are first used to heat water for heating/domestic water and then mixed with the external air to feed the evaporator of the HP with the aim of increasing energy efficiency of the latter. This system configuration decreases the possibility of freezing of the evaporator as well, which is one of the drawbacks for air source HP in Nordic climates. A parametric analysis of the system is developed by performing simulations varying the external air temperature, air humidity, and fuel cell nominal power. Coefficient of performance (COP) can increase more than 100% when fuel cell electric power is close to its nominal (50 kW), and/or inlet air has a high relative humidity (RH) (close to 100%). Instead, the effect of mixing the exhausted gases with air may be negative (up to −25%) when fuel cell electric power is 20 kW and inlet air has 25% RH. Thermodynamic analysis is carried out to prove energy advantage of such a solution with respect to a traditional one, resulting to be between 39% and 44% in terms of primary energy. The results show that the performance of the air source HP increases considerably during cold season for climates with high RH and for users with high electric power demand.



2019 ◽  
Vol 160 ◽  
pp. 113992 ◽  
Author(s):  
Zhimin Yang ◽  
Houcheng Zhang ◽  
Meng Ni ◽  
Bihong Lin


2005 ◽  
Vol 127 (1) ◽  
pp. 86-90 ◽  
Author(s):  
Eric A. Liese ◽  
Randall S. Gemmen

Solid Oxide Fuel Cell (SOFC) developers are presently considering both internal and external reforming fuel cell designs. Generally, the endothermic reforming reaction and excess air through the cathode provide the cooling needed to remove waste heat from the fuel cell. Current information suggests that external reforming fuel cells will require a flow rate twice the amount necessary for internal reforming fuel cells. The increased airflow could negatively impact system performance. This paper compares the performance among various external reforming hybrid configurations and an internal reforming hybrid configuration. A system configuration that uses the reformer to cool a cathode recycle stream is introduced, and a system that uses interstage external reforming is proposed. Results show that the thermodynamic performance of these proposed concepts are an improvement over a base-concept external approach, and can be better than an internal reforming hybrid system, depending on the fuel cell cooling requirements.



2018 ◽  
Vol 402 ◽  
pp. 124-132 ◽  
Author(s):  
Siqi Gong ◽  
Hongyu Zeng ◽  
Jin Lin ◽  
Yixiang Shi ◽  
Qiang Hu ◽  
...  


2020 ◽  
Vol 275 ◽  
pp. 124133
Author(s):  
Tiancheng Ouyang ◽  
Zhongkai Zhao ◽  
Jie Lu ◽  
Zixiang Su ◽  
Jiawei Li ◽  
...  


Energy ◽  
2015 ◽  
Vol 93 ◽  
pp. 900-907 ◽  
Author(s):  
Yuan Wang ◽  
Ling Cai ◽  
Tie Liu ◽  
Junyi Wang ◽  
Jincan Chen


Sign in / Sign up

Export Citation Format

Share Document