gas temperature
Recently Published Documents





2022 ◽  
Vol 12 (2) ◽  
pp. 744
Xinglong Zhang ◽  
Lingwei Li ◽  
Tianhong Zhang

The main data source for the verification of surge detection methods still rely on test rigs of the compressor or the whole engine, which makes the development of models of the whole engine surge process an urgent need to replace the high-cost and high-risk surge test. In this paper, a novel real-time surge model based on the surge mechanism is proposed. Firstly, the turboshaft engine component level model (CLM) and the classic surge dynamic model, Moore-Greitzer (MG) model is established. Then the stability of the MG model is analyzed and the compressor characteristics in the classical MG model are extended to establish the extended MG model. Finally, this paper considers the coupling relationship of the compressor’s rotor speed, mass flow and pressure between CLM and the extended MG model to establish the real-time model of the turboshaft engine with surge process. The simulation results show that this model can realize the whole surge process of the turboshaft engine under multiple operating states. The change characteristics of the rotor speed, compressor outlet pressure, mass flow, exhaust gas temperature and other parameters are consistent with the test data, which means that the model proposed can be further applied to the research of surge detection and anti-surge control.

2022 ◽  
pp. 146808742110722
Jie Shi ◽  
Yuanqing Zhu ◽  
Hui Peng ◽  
Haoyu Yan ◽  
Tinghui Li ◽  

With the increasing awareness of global marine environmental protection, the emission of ship exhaust pollutants is strictly restricted. Selective catalytic reduction (SCR) technology is the mainstream technology to reduce ship NOx emission and make it meet IMO tier III regulations. A SCR reaction kinetic model based on Modelica language was established by Dymola software to predict the denitration efficiency, ammonia slip rate, and other parameters of SCR system. According to the functional structure of marine SCR system, the SCR system model is divided into urea injection module, mixer module, and SCR reactor module. The model was verified by SCR system bench test of WD10 diesel engine, which proved that the model can preferably reflect the actual situation. Using the established model, the effects of temperature, flow rate, NH3/NOx Stoichiometric Ratio (NSR), and cell density on the denitration performance of SCR system were analyzed. The results showed that the exhaust gas temperature and NSR have a great influence on the denitration efficiency. The injection amount of urea solution in marine SCR system should be based on the exhaust gas temperature and exhaust flow rate.

Kaiyue Wu ◽  
Na Zhao ◽  
Qiming Niu ◽  
Jiacun Wu ◽  
Shuai Zhou ◽  

Abstract Pattern formation is a very interesting phenomenon formed above a water anode in atmospheric pressure glow discharge. Up to now, concentric-ring patterns only less than four rings have been observed in experiments. In this paper, atmospheric pressure glow discharge above a water anode is conducted to produce diversified concentric-ring patterns. Results indicate that as time elapses, the number of concentric rings increases continuously and up to five rings have been found in the concentric-ring patterns. Moreover, the ring number increases continuously with increasing discharge current. The electrical conductivity of the anode plays an important role in the transition of the concentric patterns due to its positive relation with ionic strength. Hence, the electrical conductivity of the water anode is investigated as a function of time and discharge current. From optical emission spectrum, gas temperature and intensity ratio related with density and temperature of electron have been calculated. The various concentric-ring patterns mentioned above have been simulated at last with an autocatalytic reaction model.

2022 ◽  
Vol 72 (1) ◽  
pp. 30-39
Cigdem Susantez ◽  
Aldelio Bueno Caldeira

Understanding the heat transfer phenomenon during interior ballistics and consequently presenting a realistic model is very important to predict the temperature distribution inside the cannon barrel, which influences the gun wear and the cook-off. The objective of this work is to present a new detailed numerical model for the prediction of thermal behaviour of a cannon barrel by combining PRODAS interior ballistics simulation with COMSOL simulation. In this study, a numerical model has been proposed for the heating behaviour of a 120 mm smoothbore cannon barrel, taking into account the combustion equation of the JA-2 propellant. Temperature dependent thermophysical properties of product gases were used for the calculation of the convective heat transfer coefficient inside the barrel. Projectile position, velocity of the projectile, gas temperature inside the barrel, volume behind the projectile and mass fraction during interior ballistics have been obtained by PRODAS software and used in the numerical model performed by COMSOL multiphysics finite element modelling and simulation software. Temperature simulations show that maximum wall temperature inside the cannon barrel is observed after 3 ms from fire, when maximum value of the convective heat transfer coefficient inside the barrel is observed. The results reveal that the convective heat transfer coefficient of burned gases inside the gun has major effect than the burned gas temperature on the heat transfer phenomenon.

2022 ◽  
Vol 72 (1) ◽  
pp. 10-17
Benny George ◽  
N. Muthuveerappan

In a turbofan engine, thrust is a key parameter which is measured or estimated from various parameters acquired during engine testing in an engine testbed. Exhaust Gas Temperature (EGT) is the most critical parameter used for thrust calculation. This work presents a novel way to measure and correct the errors in EGT measurement. A temperature probe is designed to measure EGT in the engine jet pipe using thermocouples. The temperature probe is designed to withstand the mechanical and temperature loads during the operation. Structural analysis at the design stage provided a strength margin of 90% and eigenfrequency margin of more than 20%. Thermal analysis is carried out to evaluate maximum metal temperature. Errors are quite high in high-temperature measurements which are corrected using the available methodologies. The velocity error, conduction error, and radiation error are estimated for the measured temperature. The difference of 97 K between the measured gas temperature and calculated gas temperature from measured thrust is explained. The estimated velocity error is 1 K, conduction error is 3 K, and radiation error is 69 K. Based on the error estimation, the measurement error is brought down to 24 K. After applying the above corrections, the further difference of 24 K between measured and estimated value can be attributed to thermocouple error of +/-0.4% of the reading for class 1 accuracy thermocouple, other parameter measurement errors, and analysis uncertainties. The present work enables the designer to calculate the errors in high-temperature measurement in a turbofan engine.

2022 ◽  
Vol 355 ◽  
pp. 01023
Shuqin Wang ◽  
Xiaoxue Li ◽  
Jinjin Wu

MIL-101 (Fe) was modified by amino group and doped by Cu and Co elements by microwave hydrothermal method. The effect of SCR denitrification at low temperature was investigated with high concentration of NOx as adsorption object. The results show that when the flue gas temperature is 200 °C and the NOx concentration is up to 1640 mg/m3, the removal efficiency of NOx can reach 86% under the optimal conditions, which is 1.5 times higher than that before modification. In addition, the characterization results indicated that the specific surface area of the modified catalyst increased, the thermal stability was good at low temperature, the selective adsorption capacity of NO was enhanced, and the doping played a synergistic catalytic role. It can be used for flue gas denitration in various industries.

2022 ◽  
Vol 171 ◽  
pp. 107213
Yulun Zhang ◽  
Changkun Chen ◽  
Peng Lei ◽  
Weibing Jiao ◽  
Tong Xu ◽  

Sign in / Sign up

Export Citation Format

Share Document