The Joint Biomechanics Change by Different Anterior Cruciate Ligament Constitutive Models Under Axial Torque Load

Author(s):  
Chao Wan ◽  
Zhixiu Hao ◽  
Shizhu Wen

According to the previous papers, it was demonstrated that anterior cruciate ligament (ACL) played an important role in resisting the coupled anterior-posterior laxity rather than the rotation laxity under axial torque load of knee joint. In the biomechanics simulation research of knee joint, some different ligament constitutive models were presented to describe the ACL material behavior. However, there is few published paper to study the effect of variable ligament constitutive model on the joint biomechanics under axial torque load. In this paper, a 3-dimension finite element model of an intact tibiofemoral joint including all the main anatomical structures was reconstructed and two ACL constitutive models were compared under 10 Nm femur external torque load. The two ACL constitutive models corresponded to an isotropic hyperelastic model and a transversely isotropic hyperelastic model considering fiber effect, respectively. All the ACL material properties of the two constitutive models were defined by fitting the same stress-strain data. Another model with ACL resected was also analyzed under the same load to estimate the function ACL played under joint axial torque load. It was found that the resection of ACL changed the knee joint deformations significantly in all directions except the distal-proximal translation. In the ACL resected joint model, the internal-external rotation, anterior-posterior and medial-lateral translations increased by about 20%, 500% and 600%, respectively. Comparing to the ACL intact joint model, the Mises stress values of medial collateral ligament decreased while that on lateral collateral ligament increased greatly (from 35 MPa to 61 MPa). In the comparison of the two different ACL constitutive models, the internal-external rotation, as the highest deformation of the knee joint, changed by about 11% and the maximal deformation alteration was obtained in the anterior-posterior translation (about 80%). Both the highest stress value and distribution on ACL have altered mostly while the Mises stress distributions of other ligaments and menisci have changed slightly. The alteration of joint kinematics and ligament biomechanics by different ACL constitutive models would be due to the different descriptions of the material transverse behavior and the real complex ACL stress distribution under an axial torque load, although the longitudinal material behaviors described by different ACL constitutive models were almost the same based on the same experiment data.

2020 ◽  
Vol 77 ◽  
pp. 105048
Author(s):  
Frieder Cornelius Krafft ◽  
Bernd Josef Stetter ◽  
Thorsten Stein ◽  
Andree Ellermann ◽  
Johannes Flechtenmacher ◽  
...  

Author(s):  
Komeil Dashti Rostami ◽  
Abbey Thomas

The influence of fatigue on landing biomechanics in anterior cruciate ligament deficient (ACLD) patients is poorly understood. The purpose of this study was to examine the effect of fatigue on hip and knee joint biomechanics in deficient patients. Twelve ACLD males and 12 healthy control subjects participated in the study. The ACLD patients landed with increased peak knee flexion angle (F = 15.71, p < .01) and decreased peak knee flexion moment (F = 9.13, p < .01) after fatigue. Furthermore, ACLD patients experienced lower vertical ground reaction forces compared with controls regardless of fatigue state (F = 9.75, p < .01). It seems that ACLD patients use protective strategy in response to fatigue in order to prevent further injury in knee point.


2017 ◽  
Vol 46 (1) ◽  
pp. 163-170 ◽  
Author(s):  
Thomas J. Kremen ◽  
Landon S. Polakof ◽  
Sean S. Rajaee ◽  
Trevor J. Nelson ◽  
Melodie F. Metzger

Background: A hamstring autograft is commonly used in anterior cruciate ligament (ACL) reconstruction (ACLR); however, there is evidence to suggest that the tendons harvested may contribute to medial knee instability. Hypothesis: We tested the hypothesis that the gracilis (G) and semitendinosus (ST) tendons significantly contribute to sagittal, coronal, and/or rotational knee stability in the setting of ACLR with a concurrent partial medial collateral ligament (MCL) injury. Study Design: Controlled laboratory study. Methods: Twelve human cadaveric knees were subject to static forces applied to the tibia including an anterior-directed force as well as varus, valgus, and internal and external rotation moments to quantify laxity at 0°, 30°, 60°, and 90° of flexion. The following ligament conditions were tested on each specimen: (1) ACL intact/MCL intact, (2) ACL deficient/MCL intact, (3) ACL deficient/partial MCL injury, and (4) ACLR/partial MCL injury. To quantify the effect of muscle loads, the quadriceps, semimembranosus, biceps femoris, sartorius (SR), ST, and G muscles were subjected to static loads. The loads on the G, ST, and SR could be added or removed during various test conditions. For each ligament condition, the responses to loading and unloading the G/ST and SR were determined. Three-dimensional positional data of the tibia relative to the femur were recorded to determine tibiofemoral rotations and translations. Results: ACLR restored anterior stability regardless of whether static muscle loads were applied. There was no significant increase in valgus motion after ACL transection. However, when a partial MCL tear was added to the ACL injury, there was a 30% increase in valgus rotation ( P < .05). ACLR restored valgus stability toward that of the intact state when the G/ST muscles were loaded. A load on the SR muscle without a load on the G/ST muscles restored 19% of valgus rotation; however, it was still significantly less stable than the intact state. Conclusion: After ACLR in knees with a concurrent partial MCL injury, the absence of loading on the G/ST did not significantly alter anterior stability. Simulated G/ST harvest did lead to increased valgus motion. These results may have important clinical implications and warrant further investigation to better outline the role of the medial hamstrings, particularly among patients with a concomitant ACL and MCL injury. Clinical Relevance: A concurrent ACL and MCL injury is a commonly encountered clinical problem. Knowledge regarding the implications of hamstring autograft harvest techniques on joint kinematics may help guide management decisions.


1988 ◽  
Vol 110 (3) ◽  
pp. 238-248 ◽  
Author(s):  
J. L. Lewis ◽  
W. D. Lew ◽  
J. Schmidt

An experimental system for the analysis of knee joint biomechanics is presented. The system provides for the simultaneous recording of ligament forces using buckle transducers and three-dimensional joint motion using an instrumented spatial linkage, as in vitro specimens are subjected to a variety of external loads by a pneumatic loading apparatus with associated force transducers. The system components are described, and results of an evaluation of system errors and accuracy are presented. The experimental setup has been successfully used in the analysis of normal knee ligament mechanics, as well as surgical reconstructions of the anterior cruciate ligament. The system can also be adapted to test other human or animal in vitro joints.


Sign in / Sign up

Export Citation Format

Share Document