Robotic Sound Source Localization Using Bio-Inspired Acoustic Sensors

Author(s):  
Laith Sawaqed ◽  
Haijun Liu ◽  
Miao Yu

In sound source localization, there is a fundamental size limit; the smaller the size, the smaller the directional cues that are relied on to pinpoint the sound source. As such, it is challenging to develop miniature sound source localization robotic system where space is too confined to employ conventional microphone arrays without compromising localization performance. Our previous studies show that through mechanical coupling with well-tuned structural parameters, directional microphones inspired by the parasitic fly Ormia ochracea can amplify the minute interaural time delay (ITD) by more than ten times, which enables the reduction of device size significantly while maintaining localization performance. In this paper, Cramer Rao lower bound (CRLB) is derived for the fly-ear inspired sensor and the conventional directional microphones to study the effects of mechanical coupling on the decrease of the theoretical lower bound of azimuth estimation. This improvement gives mobile robots the capability to reactively localize sound in an indoor environment. Using this miniature sensor, new sound source localization method is proposed to localize a stationary sound source in 2-D (azimuth and elevation). In the proposed sound localization method, Model-Free Gradient Descent (MFGD) optimization method, one of the main challenges is to choose the appropriate cost function to achieve minimum number of iterations and the smallest absolute error. To this end, different cost functions are proposed and investigated with different control schemes. Simulation results showed the ability of this technique to solve the ambiguity problem and localize the sound source.

2019 ◽  
Vol 105 (4) ◽  
pp. 657-667
Author(s):  
Sungmok Hwang

This study proposes a sound source localization method using binaural input signals. The method is based on the head-related transfer function (HRTF) database and the interaural transfer function (ITF) obtained from two measured input signals. An algorithm to reduce the effect of background noise on the localization performance in a noisy environment was adopted in the proposed localization method. Weighted error functions (WEFs), defined using the ITF and the ratio of HRTFs for two ears, were used with a special frequency weighting function derived to reduce the effect of noise and to render the WEF a physical meaning. Computer simulations confirmed that the weighting function can effectively reduce the effect of background noise on the localization performance even if the noise power is very high. Localization tests in an actual room confirmed that both the azimuth and elevation angles of sound source can be estimated simultaneously with high accuracy. In particular, the front-back and updown confusions, which are critical limitations for conventional localization methods, could be resolved using two input signals.


2018 ◽  
Vol 30 (3) ◽  
pp. 426-435 ◽  
Author(s):  
Kotaro Hoshiba ◽  
Kazuhiro Nakadai ◽  
Makoto Kumon ◽  
Hiroshi G. Okuno ◽  
◽  
...  

We have studied sound source localization, using a microphone array embedded on a UAV (unmanned aerial vehicle), for the purpose of detecting for people to rescue from disaster-stricken areas or other dangerous situations, and we have proposed sound source localization methods for use in outdoor environments. In these methods, noise robustness and real-time processing have a trade-off relationship, which is a problem to be solved for the practical application of the methods. Sound source localization in a disaster area requires both noise robustness and real-time processing. For this we propose a sound source localization method using an active frequency range filter based on the MUSIC (MUltiple Signal Classification) method. Our proposed method can successively create and apply a frequency range filter by simply using the four arithmetic operations, so it can ensure both noise robustness and real-time processing. As numerical simulations carried out to compare the successful localization rate and the processing delay with conventional methods have affirmed the usefulness of the proposed method, we have successfully produced a sound source localization method that has both noise robustness and real-time processing.


2012 ◽  
Vol 214 ◽  
pp. 856-861
Author(s):  
Xing Wang Wang ◽  
Bing Yi Sun ◽  
Bin Li ◽  
Li Li He ◽  
Cheng Quan Hu

The traditional acoustic source is sensitive to time. A novel sound source location method using linear intersection spacing multi-sensors array is provided in this paper. Each array is composed of three spaced nodes, and least squares method is used to calculate the final position according to ternary array results. Multi-arrays method is more robust than the ternary one, and much wider scope is covered. Location scope extends from 120m to 800m when the relative positioning error is 10%. A multi-array group based on linear intersection sound source localization method is provided in this paper too. Experiment results show that the proposed method has higher precision on angle locating than distance locating.


Sign in / Sign up

Export Citation Format

Share Document