input signals
Recently Published Documents


TOTAL DOCUMENTS

916
(FIVE YEARS 265)

H-INDEX

36
(FIVE YEARS 6)

Author(s):  
Fadwa Abakarim ◽  
Abdenbi Abenaou

In this research, we present an automatic speaker recognition system based on adaptive orthogonal transformations. To obtain the informative features with a minimum dimension from the input signals, we created an adaptive operator, which helped to identify the speaker’s voice in a fast and efficient manner. We test the efficiency and the performance of our method by comparing it with another approach, mel-frequency cepstral coefficients (MFCCs), which is widely used by researchers as their feature extraction method. The experimental results show the importance of creating the adaptive operator, which gives added value to the proposed approach. The performance of the system achieved 96.8% accuracy using Fourier transform as a compression method and 98.1% using Correlation as a compression method.


2022 ◽  
Author(s):  
Lauren Gambill ◽  
August Staubus ◽  
Andrea Ameruoso ◽  
James Chappell

Individual RNA remains a challenging signal to synthetically transduce into different types of cellular information. Here, we describe Ribozyme-ENabled Detection of RNA (RENDR), a plug-and-play strategy that uses cellular transcripts to template the assembly of split ribozymes, triggering splicing reactions that generate orthogonal protein outputs. To identify split ribozymes that require templating for splicing, we used laboratory evolution to evaluate the activities of different split variants of the Tetrahymena thermophila ribozyme. The best design delivered a 93-fold dynamic range of splicing with RENDR controlling fluorescent protein production in response to an RNA input. We resolved a thermodynamic model to guide RENDR design, showed how input signals can be transduced into diverse visual, chemical, and regulatory outputs, and used RENDR to detect an antibiotic resistance phenotype in bacteria. This work shows how transcriptional signals can be monitored in situ using RNA synthetic biology and converted into different types of biochemical information.


2022 ◽  
Author(s):  
Shubham Sahay ◽  
Amol Gaidhane ◽  
Yogesh Singh Chauhan ◽  
Raghvendra Dangi ◽  
Amit Verma

<div>In this paper, we develop a Verilog-A implementable compact model for the dynamic switching of ferroelectric Fin-FETs (Fe-FinFETs) for asymmetric non-periodic input signals. We use the multi-domain Preisach Model to capture the saturated P-E loop of the ferroelectric capacitors. In addition to the saturation loop, we model the history dependent minor loop paths in the P-E by tracing input signals’ turning points. To capture the input signals’ turning points, we propose an R-C circuit based approach in this work. We calibrate our proposed model with the experimental data, and it accurately captures the history effect and minor loop paths of the ferroelectric capacitor. Furthermore, the elimination of storage of each turning point makes the proposed model computationally efficient compared with the previous implementations. We also demonstrate the unique electrical characteristics of Fe-FinFETs by integrating the developed compact model of Fe-Cap with the BSIM-CMG model of 7nm FinFET.</div>


2022 ◽  
Author(s):  
Shubham Sahay ◽  
Amol Gaidhane ◽  
Yogesh Singh Chauhan ◽  
Raghvendra Dangi ◽  
Amit Verma

<div>In this paper, we develop a Verilog-A implementable compact model for the dynamic switching of ferroelectric Fin-FETs (Fe-FinFETs) for asymmetric non-periodic input signals. We use the multi-domain Preisach Model to capture the saturated P-E loop of the ferroelectric capacitors. In addition to the saturation loop, we model the history dependent minor loop paths in the P-E by tracing input signals’ turning points. To capture the input signals’ turning points, we propose an R-C circuit based approach in this work. We calibrate our proposed model with the experimental data, and it accurately captures the history effect and minor loop paths of the ferroelectric capacitor. Furthermore, the elimination of storage of each turning point makes the proposed model computationally efficient compared with the previous implementations. We also demonstrate the unique electrical characteristics of Fe-FinFETs by integrating the developed compact model of Fe-Cap with the BSIM-CMG model of 7nm FinFET.</div>


2022 ◽  
Vol 14 (4) ◽  
pp. 82-89
Author(s):  
Sergey Polyakov ◽  
V. Akimov ◽  
A. Polukazakov

The article discusses the issues of implementing the conversion of input signals of «smart» sensors for automation of the heating system, an algorithm for calculating the parameters of measuring circuits with a nonlinear element and an operational amplifier is developed. The issues of modeling cascade control of residential building heating systems are investigated. The results of the analysis and selection of parameters of the cascade control system are presented. An algorithm implementing the operation of a virtual object is given. The structures of management of residential building objects are proposed. The method of calculating the adjustment of the controller for cascade control is given. For the heating system stand, the procedure for setting the parameters of the process of PID control of the coolant temperature is considered. The results confirming the achievability of the proposed structural changes are obtained. The results of experimental studies are presented.


2021 ◽  
Vol 12 (1) ◽  
pp. 399
Author(s):  
Paweł Fiderek ◽  
Jacek Kucharski ◽  
Radosław Wajman

The paper presents an intelligent module to control dynamic two-phase gas–liquid mixtures pipelines flow processes. The module is intelligent because it uses the algorithm based on AI methods, namely, fuzzy logic inference, to build the fuzzy regulator concept. The developed modification has allowed to design and implement the black-box type regulator. Therefore, it is not required to determine any of the complicated computer models of the flow rig, which is unfortunately necessary when using the classic regulators. The inputs of the regulator are four linguistic variables that are decomposed into two classes and two methods of fuzzification. The first input class describes the current values of gas and liquid pipe flows, which at the same time are the controlled values manipulated to generate desired flow type. The second class of the input signals contains a current flow state, namely, its name and the name preferred by the operator flow type. This approach improves the control accuracy since the given flow type can be generated with different gas and liquid volume fractions. Those values can be optimized by knowing the current flow type. Moreover, the fuzzification algorithm used for the input signals included in the first-class covers the current crisp signal value and its trend making the inference more accurate and resistant to slight measurement system inaccuracy. This approach of defined input signals in such environments is used for the first time. Considering all mentioned methods, it is possible to generate the desired flow type by manipulating the system input signals by minimum required values. Furthermore, a flow type can be changed by adjusting only one of the input signals. As an output of the inference process, two linguistic values are received, which are fuzzified adjustment values of the liquid pump and gas flow meter. The regulator looks to be universal, and it can be adopted by multiple test and production rigs. Moreover, once configured with a dedicated rig, it can be easily operated by the non (domain) technical staff. The usage of fuzzy terms makes understanding both the control strategy working principles and the obtained results easy.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 50
Author(s):  
Trong-Danh Nguyen ◽  
Jun Seop Lee

With the rapid development of society in recent decades, the wearable sensor has attracted attention for motion-based health care and artificial applications. However, there are still many limitations to applying them in real life, particularly the inconvenience that comes from their large size and non-flexible systems. To solve these problems, flexible small-sized sensors that use body motion as a stimulus are studied to directly collect more accurate and diverse signals. In particular, tactile sensors are applied directly on the skin and provide input signals of motion change for the flexible reading device. This review provides information about different types of tactile sensors and their working mechanisms that are piezoresistive, piezocapacitive, piezoelectric, and triboelectric. Moreover, this review presents not only the applications of the tactile sensor in motion sensing and health care monitoring, but also their contributions in the field of artificial intelligence in recent years. Other applications, such as human behavior studies, are also suggested.


2021 ◽  
pp. 1-10
Author(s):  
Alfredo García ◽  
Juan Manuel González ◽  
Amparo Palomino

In the current world, the need to know instantaneous information that helps people to know their current physical and intellectual conditions has become paramount, each time new systems that provide information to the user in real time are incorporated in portable devices. This information indicates different health parameters of the user, it can be obtained through their physiological variables such as: number of steps, heart rate, oxygenation level in the blood and other ones. One of the most requested intellectual conditions to be known by the user is: the level of attention reached when the user executes a task. This work describes a methodology and the experimentation to know the level of attention of people through a test to identify colors also are shown the development and the application of a system (hardware and software) to measure the level of attention of people using two input signals: corporal posture and brain waves. The mathematical analysis to find the correlation between the corporal posture and the level of attention is shown in this paper. The results obtained indicate that the corporal posture influences on the level of attention of people directly.


Author(s):  
Felix Heinrich ◽  
Jonas Kaste ◽  
Sevsel Gamze Kabil ◽  
Michael Sanne ◽  
Ferit Küçükay ◽  
...  

AbstractUnlike electromechanical steering systems, steer-by-wire systems do not have a mechanical coupling between the wheels and the steering wheel. Therefore, a synthetic steering feel has to be generated to supply the driver with the necessary haptic information. In this paper, the authors analyze two approaches of creating a realistic steering feel. One is a modular approach that uses several measured and estimated input signals to model a steering wheel torque via mathematical functions. The other approach is based on an artificial neural network. It depends on steering and vehicle measurements. Both concepts are optimized and trained, respectively, to best fit a reference steering feel obtained from vehicle measurements. To carry out the analysis, the two approaches are evaluated using a simulation model consisting of a vehicle, a rack actuator, and a steering wheel actuator. The research shows that both concepts are able to adequately model a desired steering feel.


Sign in / Sign up

Export Citation Format

Share Document