mechanical coupling
Recently Published Documents


TOTAL DOCUMENTS

1703
(FIVE YEARS 557)

H-INDEX

54
(FIVE YEARS 11)

Author(s):  
Shunzu Zhang ◽  
Shiwei Shu ◽  
Xiaohui Bian

Abstract This letter reports the design of a magneto-elastic metasurface composed of arrayed Terfenol-D pillars deposited on a homogeneous Aluminum plate, aiming to realize the tunability of flexural wave anomalous propagation without altering the structure. Considering the magneto-mechanical coupling of magnetostrictive materials, the phase shift and transmission of functional unit can be calculated. The anomalous refraction of incident flexural wave (i.e., negative refraction) can be accomplished by adjusting magnetic field and pre-stress properly, the refraction angle is remarkably affected by magnetic distribution. The proposed metasurface provides a method for flexible tunability of elastic wave in the fields of vibration/noise control.


Geofluids ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Chaojun Fan ◽  
Haiou Wen ◽  
Sheng Li ◽  
Gang Bai ◽  
Lijun Zhou

Owing to the exhaustion of shallow coal resources, deep mining has been occupied in coal mines. Deep buried coal seams are featured by the great ground stress, high gas pressure, and low permeability, which boost the risk of gas disasters and thus dramatically threaten the security about coal mines. Coal seam gas pressure and gas content can be decreased by gas extraction, which is the primary measure to prevent and control mine gas disasters. The coal mass is simplified into a continuous medium with dual structure of pores and fractures and single permeability. In consideration of the combined effects of gas slippage and two-phase flow, a hydraulic-mechanical coupling model for gas migration in coals is proposed. This model involves the equations of gas sorption and diffusion, gas and water seepage, coal deformation, and evolution of porosity and permeability. Based on these, the procedure of gas extraction through the floor roadway combined with hydraulic punching and ordinary drainage holes was simulated, and the gas extraction results were used to evaluate the outburst danger of roadway excavation and to verify the engineering practice. Results show that gas extraction can reduce coal seam gas pressure and slow down the rate of gas release, and the established hydraulic-mechanical coupling model can accurately reveal the law of gas extraction by drilling and punching boreholes. After adopting the gas extraction technology of drilling and hydraulic punching from the floor roadway, the remaining gas pressure and gas content are reduced to lower than 0.5 MPa and 5.68 m3/t, respectively. The achievements set a theoretical foundation to the application of drilling and punching integrated technology to enhance gas extraction.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 419
Author(s):  
Piotr Derugo ◽  
Krzysztof Szabat ◽  
Tomasz Pajchrowski ◽  
Krzysztof Zawirski

This paper presents original concepts of control systems for an electrical drive with an elastic mechanical coupling between the motor and the driven mechanism. The synthesis procedure of the speed controller uses a proposed quality index (cost function) of system operation ensures the minimization of both tracking errors and torsional vibrations. Proper selection of the cost function focusses more on the reduction of torsional vibrations due to their negative influence on the drive’s mechanical coupling vitality. The omission of the plant identification of an adaptive fuzzy controller was proposed. Two types of fuzzy controllers were analyzed, namely with type I and type II fuzzy membership functions. The novelty of the presented approach is in the application of a Petri transition layer in a type II fuzzy controller which reduces the numerical complexity in case of a large number of complicated type II fuzzy sets. The presented simulation and experimental results prove that the best dumping of mechanical vibrations ensures the adaptive fuzzy controller with type II functions and a Petri transition layer.


2022 ◽  
Vol 8 ◽  
Author(s):  
Feng Qin ◽  
Chunbo Zhang ◽  
Jun Zhou ◽  
Kai Xu ◽  
Qi Wang ◽  
...  

In recent years, studying the weldability of a dissimilar metal hybrid structure, with the potential to make full use of their unique benefits, has been a research hotspot. In this article, inertia friction welding was utilized to join Φ130 forged ring of 2219 aluminum alloy with 304 stainless steel. Optical observation (OM), electron back scattering diffraction (EBSD), and scanning electron microscopy (SEM) were utilized to examine the joint microstructure in depth. Depending on the research, a significant thermal–mechanical coupling effect occurs during welding, resulting in inadequate recrystallization on aluminum-side thermo-mechanically affected zone (TMAZ) and forming zonal features. The crystal orientation and grain size of each TMAZ region reflect distinct differences. On the joint faying surface, the growth of intermetallic compounds (IMCs) is inhibited by a fast cooling rate and metallurgical bonding characteristics were found depending on the discontinuous distribution of IMCs. The average joint tensile strength can reach 161.3 MPa achieving 92.2% of 2219-O; fracture occurs on aluminum-side base metal presenting ductile fracture characteristics.


Sign in / Sign up

Export Citation Format

Share Document