Performance Improvements of Krylov Subspace Methods in Numerical Heat Transfer and Fluid Flow Simulations

Author(s):  
Matthew Blomquist ◽  
Abhijit Mukherjee

Abstract In recent years, advancements in computational hardware have enabled massive parallelism that can significantly reduce the duration of many numerical simulations. However, many high-fidelity simulations use serial algorithms to solve large systems of linear equations and are not well suited to exploit the parallelism of modern hardware. The Tri-Diagonal Matrix Algorithm (TDMA) is one such example of a serial algorithm that is ubiquitous in numerical simulations of heat transfer and fluid flow. Krylov subspace methods for solving linear systems, such as the Bi-Conjugate Gradients (BiCG) algorithm, can offer an ideal solution to improve the performance of numerical simulations as these methods can exploit the massive parallelism of modern hardware. In the present work, Krylov-based linear solvers of Bi-Conjugate Gradients (BCG), Generalized Minimum Residual (GMRES), and Bi-Conjugate Gradients Stabilized (BCGSTAB) have been incorporated into the SIMPLER algorithm to solve a three-dimensional Rayleigh-Bénard Convection model. The incompressible Navier-Stoke’s equations, along with the continuity and energy equations, are solved using the SIMPLER method. The computational duration and numerical accuracy for the Krylov-solvers are compared with that of the TDMA. The results show that Krylov methods can improve the speed of convergence for the SIMPLER method by factors up to 7.7 while maintaining equivalent numerical accuracy to the TDMA.

Author(s):  
Yuka Hashimoto ◽  
Takashi Nodera

AbstractThe Krylov subspace method has been investigated and refined for approximating the behaviors of finite or infinite dimensional linear operators. It has been used for approximating eigenvalues, solutions of linear equations, and operator functions acting on vectors. Recently, for time-series data analysis, much attention is being paid to the Krylov subspace method as a viable method for estimating the multiplications of a vector by an unknown linear operator referred to as a transfer operator. In this paper, we investigate a convergence analysis for Krylov subspace methods for estimating operator-vector multiplications.


2008 ◽  
Vol 17 (03) ◽  
pp. 439-446
Author(s):  
HAOHANG SU ◽  
YIMEN ZHANG ◽  
YUMING ZHANG ◽  
JINCAI MAN

An improved method is proposed based on compressed and Krylov-subspace iterative approaches to perform efficient static and transient simulations for large-scale power grid circuits. It is implemented with CG and BiCGStab algorithms and an excellent result has been obtained. Extensive experimental results on large-scale power grid circuits show that the present method is over 200 times faster than SPICE3 and around 10–20 times faster than ICCG method in transient simulations. Furthermore, the presented algorithm saves the memory usage over 95% of SPICE3 and 75% of ICCG method, respectively while the accuracy is not compromised.


Sign in / Sign up

Export Citation Format

Share Document