Discrete Vortex Modeling of a Flapping Foil Energy Harvester With LEV Shedding Criterion

Author(s):  
Kiana Kamrani Fard ◽  
James A. Liburdy

Abstract The energy harvesting performance of a flapping airfoil is studied through discrete vortex model. Results are obtained for a thin flat airfoil that undergoes a sinusoidal flapping motion for reduced frequencies of k = fC/U∞ = 0.06–0.16 where f is the heaving frequency of the foil, C is the chord length and U∞ is the freestream velocity. The airfoil pitches about the mid-chord and the heaving and pitching amplitudes of the airfoil are h0 = 0.5C and θ0 = 70° respectively, as these numbers have been shown to give optimal energy harvesting results for a rigid airfoil. The study applies a panel-based discrete vortex model that incorporates a leading edge suction parameter criterion to understand the flow behavior around the airfoil. The leading edge suction parameter is found from 2D CFD simulations (Navier-Stokes equations solved in Fluent) for all K values. A correlation between the critical leading edge suction parameter and reduced frequency is found from the identified critical LESP values. An empirical trailing edge separation correction is also applied to the transient force results since flow separation at the trailing edge is anticipated. The parameters of interest from the model are transient distributions of force, power output, and overall efficiency. Model results are then validated against 2D CFD simulations. The effect of reduced frequency on power production and overall efficiency is finally studied to identify the optimal reduced frequency for energy harvesting applications.

Author(s):  
Michael W. Prier ◽  
James A. Liburdy

Abstract Energy harvesting performance for a flapping foil device is evaluated to determine how activated leading edge motion affects the aerodynamic forces and the cycle power generated. Results are obtained for a thin flat foil that pitches about the mid-chord and operates in the reduced frequency range of k = fc/U of 0.06–0.10 and Reynolds numbers of 20,000 and 30,000 with a pitching amplitude of 70° and heaving amplitude of h0 = 0.5c. Time resolved data are presented based on direct force measurements and are used to determine overall cycle efficiency and coefficient of power. These results are compared against a panel-based discrete vortex model to predict power production. The model incorporates a leading edge suction parameter predictor for vortex shedding and empirical adjustments to circulatory forces. It is found that the leading edge motions that reduce the effective angle of attack early in a flapping stroke generate larger forces later in the stroke. Consequently, the energy harvesting efficiencies and power coefficients are increased since the generated aerodynamic loads are better synchronized with the foil motion. The efficiency gains are reduced with increasing reduced frequencies.


1984 ◽  
Vol 146 ◽  
pp. 331-345 ◽  
Author(s):  
I. G. Bromilow ◽  
R. R. Clements

Flow visualization has shown that the interaction of line vortices is a combination of tearing, elongation and rotation, the extent of each depending upon the flow conditions. A discrete-vortex model is used to study the interaction of two and three growing line vortices of different strengths and to assess the suitability of the method for such simulation.Many of the features observed in experimental studies of shear layers are reproduced. The controlled study shows the importance and rapidity of the tearing process under certain conditions.


Author(s):  
Shigeru Yoshikawa

Musical flue instruments such as the pipe organ and flute mainly consist of the acoustic pipe resonance and the jet impinging against the pipe edge. The edge tone is used to be considered as the energy source coupling to the pipe resonance. However, jet-drive models describing the complex jet/pipe interaction were proposed in the late 1960s. Such models were more developed and then improved to the discrete-vortex model and vortex-layer model by introducing fluid-dynamical viewpoint, particularly vortex sound theory on acoustic energy generation and dissipation. Generally, the discrete-vortex model is well applied to thick jets, while the jet-drive model and the vortex-layer model are valid to thin jets used in most flue instruments. The acoustically induced vortex (acoustic vortex) is observed near the amplitude saturation with the aid of flow visualization and is regarded as the final sound dissipation agent. On the other hand, vortex layers consisting of very small vortices along both sides of the jet are visualized by the phase-locked PIV and considered to generate the acceleration unbalance between both vortex layers that induces the jet wavy motion coupled with the pipe resonance. Vortices from the jet visualized by direct numerical simulations are briefly discussed.


Fluids ◽  
2021 ◽  
Vol 6 (12) ◽  
pp. 457
Author(s):  
Al Habib Ullah ◽  
Kristopher L. Tomek ◽  
Charles Fabijanic ◽  
Jordi Estevadeordal

An experimental investigation regarding the dynamic stall of various swept wing models with pitching motion was performed to analyze the effect of sweep on the dynamic stall. The experiments were performed on a wing with a NACA0012 airfoil section with an aspect ratio of AR = 4. The experimental study was conducted for chord-based Reynolds number Rec =2×105 and freestream Mach number Ma=0.1. First, a ‘particle image velocimetry’ (PIV) experiment was performed on the wing with three sweep angles, Λ=0o, 15o, and 30o, to obtain the flow structure at several wing spans. The results obtained at a reduced frequency showed that a laminar separation bubble forms at the leading edge of the wing during upward motion. As the upward pitching motion continues, a separation burst occurs and shifts towards the wing trailing edge. As the wing starts to pitch downward, the growing dynamic stall vortex (DSV) vortex sheds from the wing’s trailing edge. With the increasing sweep angle of the wing, the stall angle is delayed during the dynamic motion of the wing, and the presence of DSV shifts toward the wingtip. During the second stage, a ‘turbo pressure-sensitive paint’ (PSP) technique was deployed to obtain the phase average of the surface pressure patterns of the DSV at a reduced frequency, k=0.1. The phase average of pressure shows a distinct pressure map for two sweep angles, Λ=0o, 30o, and demonstrates a similar trend to that presented in the published computational studies and the experimental data obtained from the current PIV campaign.


Sign in / Sign up

Export Citation Format

Share Document