scholarly journals Dynamic Stall Characteristics of Pitching Swept Finite-Aspect-Ratio Wings

Fluids ◽  
2021 ◽  
Vol 6 (12) ◽  
pp. 457
Author(s):  
Al Habib Ullah ◽  
Kristopher L. Tomek ◽  
Charles Fabijanic ◽  
Jordi Estevadeordal

An experimental investigation regarding the dynamic stall of various swept wing models with pitching motion was performed to analyze the effect of sweep on the dynamic stall. The experiments were performed on a wing with a NACA0012 airfoil section with an aspect ratio of AR = 4. The experimental study was conducted for chord-based Reynolds number Rec =2×105 and freestream Mach number Ma=0.1. First, a ‘particle image velocimetry’ (PIV) experiment was performed on the wing with three sweep angles, Λ=0o, 15o, and 30o, to obtain the flow structure at several wing spans. The results obtained at a reduced frequency showed that a laminar separation bubble forms at the leading edge of the wing during upward motion. As the upward pitching motion continues, a separation burst occurs and shifts towards the wing trailing edge. As the wing starts to pitch downward, the growing dynamic stall vortex (DSV) vortex sheds from the wing’s trailing edge. With the increasing sweep angle of the wing, the stall angle is delayed during the dynamic motion of the wing, and the presence of DSV shifts toward the wingtip. During the second stage, a ‘turbo pressure-sensitive paint’ (PSP) technique was deployed to obtain the phase average of the surface pressure patterns of the DSV at a reduced frequency, k=0.1. The phase average of pressure shows a distinct pressure map for two sweep angles, Λ=0o, 30o, and demonstrates a similar trend to that presented in the published computational studies and the experimental data obtained from the current PIV campaign.

Author(s):  
Venkata Ravishankar Kasibhotla ◽  
Danesh Tafti

The paper is concerned with the prediction and analysis of dynamic stall of flow past a pitching NACA0012 airfoil at 1 million Reynolds number based on the chord length of the airfoil and at reduced frequency of 0.25 in a three dimensional flow field. The turbulence in the flow field is resolved using large eddy simulations with the dynamic Smagorinsky model at the sub grid scale. The development of dynamic stall vortex, shedding and reattachment as predicted by the present study are discussed in detail. This study has shown that the downstroke phase of the pitching motion is strongly three dimensional and is highly complex, whereas the flow is practically two dimensional during the upstroke. The lift coefficient agrees well with the measurements during the upstroke. However, there are differences during the downstroke. The computed lift coefficient undergoes a sharp drop during the start of the downstroke as the convected leading edge vortex moves away from the airfoil surface. This is followed by a recovery of the lift coefficient with the formation of a secondary trailing edge vortex. While these dynamics are clearly reflected in the predicted lift coefficient, the experimental evolution of lift during the downstroke maintains a fairly smooth and monotonic decrease in the lift coefficient with no lift recovery. The simulations also show that the reattachment process of the stalled airfoil is completed before the start of the upstroke in the subsequent cycle due to the high reduced frequency of the pitching cycle.


Author(s):  
Bryn N. Ubald ◽  
Jiahuan Cui ◽  
Rob Watson ◽  
Paul G. Tucker ◽  
Shahrokh Shahpar

The measurement accuracy of the temperature/pressure probe mounted at the leading edge of a turbine/compressor blade is crucial for estimating the fuel consumption of a turbo-fan engine. Apart from the measurement error itself, the probe also introduces extra losses. This again would compromise the measurement accuracy of the overall engine efficiency. This paper utilizes high-fidelity numerical analysis to understand the complex flow around the probe and quantify the loss sources due to the interaction between the blade and its instrumentation. With the inclusion of leading edge probes, three dimensional flow phenomena develop, with some flow features acting in a similar manner to a jet in cross flow. The separated flow formed at the leading edge of the probe blocks a large area of the probe bleed-hole, which is one of the reasons why the probe accuracy can be sensitive to Mach and Reynolds numbers. The addition of 4% free stream turbulence is shown to have a marginal impact on the jet trajectory originated from the probe bleedhole. However, a slight reduction is observed in the size of the separation bubble formed at the leading edge of the probe, preceding the two bleedhole exits. The free stream turbulence also has a significant impact on the size of the separation bubble near the trailing edge of the blade. With the addition of the free stream turbulence, the loss observed within the trailing edge wake is reduced. More than 50% of the losses at the cascade exit are generated by the leading edge probe. A breakdown of the dissipation terms from the mean flow kinetic energy equation demonstrates that the Reynolds stresses are the key terms in dissipating the counter rotating vortex pairs with the viscous stresses responsible for the boundary layer.


2019 ◽  
Vol 11 ◽  
pp. 175682931983367
Author(s):  
Carolyn M Reed ◽  
David A Coleman ◽  
Moble Benedict

This paper provides a fundamental understanding of the unsteady fluid-dynamic phenomena on a cycloidal rotor blade operating at ultra-low Reynolds numbers (Re ∼ 18,000) by utilizing a combination of instantaneous blade force and flowfield measurements. The dynamic blade force coefficients were almost double the static ones, indicating the role of dynamic stall. For the dynamic case, the blade lift monotonically increased up to ±45° pitch amplitude; however, for the static case, the flow separated from the leading edge after around 15° with a large laminar separation bubble. There was significant asymmetry in the lift and drag coefficients between the upper and lower halves of the trajectory due to the flow curvature effects (virtual camber). The particle image velocimetry measured flowfield showed the dynamic stall process during the upper half to be significantly different from the lower half because of the reversal of dynamic virtual camber. Even at such low Reynolds numbers, the pressure forces, as opposed to viscous forces, were found to be dominant on the cyclorotor blade. The power required for rotation (rather than pitching power) dominated the total blade power.


Author(s):  
Yi-yang Ma ◽  
Qi-jun Zhao ◽  
Guo-qing Zhao

In order to improve the aerodynamic characteristics of rotor, a new active flow control strategy by combining a synthetic jet actuator and a variable droop leading-edge or a trailing-edge flap has been proposed. Their control effects are numerically investigated by computational fluid dynamics (CFD) method. The validated results indicate that variable droop leading-edge and synthetic jet can suppress the formation of dynamic stall vortex and delay flow separation over rotor airfoil. Compared with the baseline state, Cdmax and Cmmax are significantly reduced. Furthermore, parametric analyses on dynamic stall control of airfoil by the combinational method are conducted, and it indicates that the aerodynamic characteristics of the oscillating rotor airfoil can be significantly improved when the non-dimensional frequency ( k*) of variable droop leading-edge is about 1.0. At last, simulations are conducted for the flow control of rotor by the combinational method. The numerical results indicate that large droop angle of variable droop leading-edge can better reduce the torque coefficient of rotor and the trailing-edge flap has the capability of increasing the thrust of rotor. Also, the synthetic jet could further improve the aerodynamic characteristics of rotor.


2017 ◽  
Vol 832 ◽  
pp. 697-720 ◽  
Author(s):  
Kyohei Onoue ◽  
Kenneth S. Breuer

We examine the dynamics of the leading-edge vortex (LEV) on a rapidly pitching plate with the aim of elucidating the underlying flow physics that dictates the stability and circulation of the LEV. A wide variety of flow conditions is considered in the present study by systematically varying the leading-edge sweep angle ($\unicode[STIX]{x1D6EC}=0^{\circ }$, $11.3^{\circ }$, $16.7^{\circ }$) and the reduced frequency ($f^{\ast }=0.064{-}0.151$), while keeping the pitching amplitude and the Reynolds number fixed. Tomographic particle image velocimetry is used to characterise the three-dimensional fluid motion inside the vortex core and its relation to the LEV stability and growth. A series of control volume analyses are performed to quantify the relative importance of the vorticity transport phenomena taking place inside the LEV to the overall vortex development. We show that, near the wing apex where tip effects can be neglected, the vortex develops in a nominally two-dimensional manner, despite the presence of inherently three-dimensional vortex dynamics such as vortex stretching and compression. Furthermore, we demonstrate that the vortex formation time and circulation growth are well-described by the principles of optimal vortex formation number, and that the occurrence of vortex shedding is dictated by the relative energetics of the feeding shear layer and the resulting vortex.


Author(s):  
Vrishank Raghav ◽  
Nandeesh Hiremath ◽  
Narayanan Komerath

Stereoscopic Particle Image Velocimetry data from a 2-bladed rigid NACA0013 rotor undergoing retreating blade dynamic stall in a low-speed wind tunnel, are analyzed to understand the phenomenon of 3-dimensional reattachment at the end of the dynamic stall cycle. Continuing from prior studies on the inception and progression of 3-D rotating dynamic stall for this test case, phase-resolved, ensemble-averaged results are presented for two values of rotor advance ratio at two spanwise stations along the blade. The results show the nominal reattachment getting delayed in rotor azimuth with higher advance ratio. At low advance ratio reattachment starts at the leading-edge and progresses towards the trailing-edge with a vortex shedding transporting excess vorticity sheds from the leading-edge and convects away, with the flow reattaching behind it. At higher advance ratio, the vortical structure shrinks in size while the flow close to the trailing-edge appears to reattach. Spanwise vorticity transport appears to be the mechanism. The difference could be attributed to the lower chordwise velocity of the blade at higher advance ratio, bringing in a rotation effect.


Author(s):  
Mojtaba Honarmand ◽  
Mohammad Hassan Djavareshkian ◽  
Behzad Forouzi Feshalami ◽  
Esmaeil Esmaeilifar

In this research, viscous, unsteady and turbulent fluid flow is simulated numerically around a pitching NACA0012 airfoil in the dynamic stall area. The Navier-Stokes equations are discretized based on the finite volume method and are solved by the PIMPLE algorithm in the open source software, namely OpenFOAM. The SST k - ω model is used as the turbulence model for Low Reynolds Number flows in the order of 105. A homogenous dynamic mesh is used to reduce cell skewness of mesh to prevent non-physical oscillations in aerodynamic forces unlike previous studies. In this paper, the effects of Reynolds number, reduced frequency, oscillation amplitude and airfoil thickness on aerodynamic force coefficients and dynamic stall delay are investigated. These parameters have a significant impact on the maximum lift, drag, the ratio of aerodynamic forces and the location of dynamic stall. The most important parameters that affect the maximum lift to drag coefficient ratio and cause dynamic stall delaying are airfoil thickness and reduced frequency, respectively.


Author(s):  
Colin Stutz ◽  
Douglas Bohl ◽  
Melissa Green

Abstract The flow around, and in the wake of, pitching airfoils has received renewed interest due to its potential for thrust production at low Reynolds numbers. Past work has centered on the flow fields generated by symmetric pitching of the airfoil. Studies investigating the effects of asymmetric motion are more limited. This work focuses on the wake patterns developed due to asymmetric pitching. Particle Image Velocimetry (PIV) is used to quantify the flow field around a NACA0012 airfoil undergoing small amplitude, high frequency asymmetric pitching. The airfoil is pitched about the quarter chord point with an amplitude of ±4° at reduced frequencies of k = 2.6–5.8 at a Rec = 12000. Pitching symmetries of 50/50, 40/60 and 30/70 are studied, where the symmetry is defined by the fraction of the cycle spent in the pitch down versus pitch up motion. The data show that for the 50/50 (symmetric) motions two alternating sign vortices, with equivalent strength, are formed as expected. The asymmetric cases show that a single vortex is formed during the “fast” portion of the pitching motion. Multiple vortices are formed during the “slow” portion of the pitching motion. The number of secondary vortices and the downstream evolution of the vortices depends on the symmetry value. In some cases they remain isolated but orbit other vortical structures, while in other cases they pair with other vortical structures, and finally when the reduced frequency and asymmetry values are high enough the vortex array shows interaction between cycles.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Lourelay Moreira dos Santos ◽  
Guilherme Ferreira Gomes ◽  
Rogerio F. Coimbra

Purpose The purpose of this study is to investigate the aerodynamic characteristics of a low-to-moderate-aspect-ratio, tapered, untwisted, unswept wing, equipped of sheared wing tips. Design/methodology/approach In this work, wind tunnel tests were made to study the influence in aerodynamic characteristics over a typical low-to-moderate-aspect-ratio wing of a general aviation aircraft, equipped with sheared – swept and tapered planar – wing tips. An experimental parametric study of different wing tips was tested. Variations in its leading and trailing edge sweep angle as well as variations in wing tip taper ratio were considered. Sheared wing tips modify the flow pattern in the outboard region of the wing producing a vortex flow at the wing tip leading edge, enhancing lift at high angles of attack. Findings The induced drag is responsible for nearly 50% of aircraft total drag and can be reduced through modifications to the wing tip. Some wing tip models present complex geometries and many of them present benefits in particular flight conditions. Results have demonstrated that sweeping the wing tip leading edge between 60 and 65 degrees offers an increment in wing aerodynamic efficiency, especially at high lift conditions. However, results have demonstrated that moderate wing tip taper ratio (0.50) has better aerodynamic benefits than highly tapered wing tips (from 0.25 to 0.15), even with little less wing tip leading edge sweep angle (from 57 to 62 degrees). The moderate wing tip taper ratio (0.50) offers more wing area and wing span than the wings with highly tapered wing tips, for the same aspect ratio wing. Originality/value Although many studies have been reported on the aerodynamics of wing tips, most of them presented complex non-planar geometries and were developed for cruise flight in high subsonic regime (low lift coefficient). In this work, an exploration and parametric study through wind tunnel tests were made, to evaluate the influence in aerodynamic characteristics of a low-to-moderate-aspect-ratio, tapered, untwisted, unswept wing, equipped of sheared wing tips (wing tips highly swept and tapered).


2019 ◽  
Vol 870 ◽  
pp. 870-900 ◽  
Author(s):  
Anupam Sharma ◽  
Miguel Visbal

Effect of airfoil thickness on onset of dynamic stall is investigated using large eddy simulations at chord-based Reynolds number of 200 000. Four symmetric NACA airfoils of thickness-to-chord ratios of 9 %, 12 %, 15 % and 18 % are studied. The three-dimensional Navier–Stokes solver, FDL3DI is used with a sixth-order compact finite difference scheme for spatial discretization, second-order implicit time integration and discriminating filters to remove unresolved wavenumbers. A constant-rate pitch-up manoeuver is studied with the pitching axis located at the airfoil quarter chord. Simulations are performed in two steps. In the first step, the airfoil is kept static at a prescribed angle of attack ($=4^{\circ }$). In the second step, a ramp function is used to smoothly increase the pitch rate from zero to the selected value and then the pitch rate is held constant until the angle of attack goes past the lift-stall point. The solver is verified against experiments for flow over a static NACA 0012 airfoil. Static simulation results of all airfoil geometries are also compared against XFOIL predictions with a generally favourable agreement. FDL3DI predicts two-stage transition for thin airfoils (9 % and 12 %), which is not observed in the XFOIL results. The dynamic simulations show that the onset of dynamic stall is marked by the bursting of the laminar separation bubble (LSB) in all the cases. However, for the thickest airfoil tested, the reverse flow region spreads over most of the airfoil and reaches the LSB location immediately before the LSB bursts and dynamic stall begins, suggesting that the stall could be triggered by the separated turbulent boundary layer. The results suggest that the boundary between different classifications of dynamic stall, particularly leading edge stall versus trailing edge stall, is blurred. The dynamic-stall onset mechanism changes gradually from one to the other with a gradual change in some parameters, in this case, airfoil thickness.


Sign in / Sign up

Export Citation Format

Share Document