Surface Grinding of CFRP Composites Using Rotary Ultrasonic Machining: Effects of Ultrasonic Power

Author(s):  
Hui Wang ◽  
Yingbin Hu ◽  
Fuda Ning ◽  
Yuzhou Li ◽  
Meng Zhang ◽  
...  

Carbon fiber reinforced plastic (CFRP) composites have superior properties, including high strength-to-weight ratio, high modulus-to-weight ratio, high fatigue resistance, etc. These properties make CFRP composites being popular in many kinds of industries. Due to the inhomogeneous and anisotropic properties, and high abrasiveness of the reinforcement in CFRP composites, they are classified as difficult-to-cut materials in surface grinding processes. Many problems (including high cutting force and low machining efficiency) are generated in conventional surface grinding processes. In order to reduce and eliminate these problems, rotary ultrasonic machining (RUM) surface grinding of CFRP composites is conducted in this investigation. Effects of ultrasonic power in different machining levels are of great importance in RUM surface grinding processes. However, no investigations on effects of ultrasonic power in different machining levels are conducted in such a process. This investigation, for the first time, tests the effects of ultrasonic power on output variables, including cutting force, torque, and surface roughness in different machining levels. This paper will provide guides for future research on effects of ultrasonic power in different combinations of machining variables on output variables.

Author(s):  
Palamandadige Fernando ◽  
Meng Zhang ◽  
Zhijian Pei ◽  
Adam Owens

Abstract The aim of this study is to investigate the edge chipping and surface roughness of basalt rock processed by rotary ultrasonic machining (RUM) using compressed air as coolant. Basalt rock is commonly used as a building and construction material for foundations and dams, as well as in architectural designs such as constructing thin veneers and facades. Rotary ultrasonic machining, a hybrid process of grinding and ultrasonic machining, is employed to drill difficult-to-machine materials such as ceramics, composites, titanium alloys, stainless steel, etc. RUM has many advantages over conventional machining processes such as twist drilling. These advantages include lower cutting force, higher surface quality, lower tool wear, etc. This paper is the first in literature to report a study on edge chipping and surface roughness on RUM of basalt rock using cold compressed air as coolant. The effects of three input variables (tool rotation speed, feedrate, and ultrasonic power) on cutting force, torque, edge chipping, and surface roughness were studied. Experimental results obtained from this investigation show that RUM with cold air as the coolant has the capability to machine holes in basalt rock with a surface roughness of less than 3.5 μm without severe edge chipping.


Author(s):  
Weilong Cong ◽  
Qiang Feng ◽  
Z. J. Pei ◽  
Clyde Treadwell

Many experiments on rotary ultrasonic machining (RUM) have been conducted to study how input variables (including tool rotation speed, ultrasonic power, feedrate, and abrasive size) affect output variables (such as cutting force, torque, surface roughness, and edge chipping) by using diamond tools. However, a literature review has revealed that there is no reported study on CBN tools in RUM. This paper, for the first time in literature, presents an investigation of RUM of stainless steel using CBN tools. Firstly, an introduction of superabrasive materials and RUM principle was provided. After presenting the experiment procedures and workpiece properties, it reports the results on tool wear, cutting force, torque, surface roughness in RUM of stainless. Finally, it discusses and compares the performances of diamond and CBN tools in RUM of stainless steel under certain conditions.


Author(s):  
W. M. Zeng ◽  
Z. C. Li ◽  
N. J. Churi ◽  
Z. J. Pei ◽  
C. Treadwell

Many experimental studies have been conducted to explore the relations between control variables and process outputs in rotary ultrasonic machining (RUM). However, there are few reports on the comparison between RUM and conventional diamond drilling. In this paper, the cutting force and surface roughness are compared when machining alumina with RUM method and with conventional diamond drilling method. Furthermore, the effects of the control variables (rotational speed, feed rate, and ultrasonic power) on RUM outputs (such as cutting force and surface roughness) are studied. It is found that in comparison with conventional diamond drilling, the cutting force can be reduced significantly and the surface roughness can be improved by using RUM. It is also found that rotational speed, feed rate, and ultrasonic power have significant effects on RUM process.


Sign in / Sign up

Export Citation Format

Share Document