feed rate
Recently Published Documents


TOTAL DOCUMENTS

1852
(FIVE YEARS 605)

H-INDEX

35
(FIVE YEARS 8)

2022 ◽  
Vol 8 (1) ◽  
pp. 17-24
Author(s):  
R. Brovko ◽  
L. Mushinskii ◽  
V. Doluda

The methanol into hydrocarbons transformation is a complex catalytic reaction accompanied by the formation of a wide range of hydrocarbons and proceeding on the surface of acid sites of various zeolites. Zeolite H-ZSM-5 considered to be most often used catalyst for this process. H-ZSM-5 is a highly dispersed material with a crystal diameter of 1–20 microns, which complicates its direct use in reactors with a fixed catalyst bed due to the high hydraulic pressure drop of the catalytic bed. Traditionally in industry, this issue is solved by using complex reactor systems with a fluidized bed, which is justified for large-scale production. In small and medium-size plants, the use of fluidized bed systems is not economically feasible. One of the possible solutions to this problem is the use of a monolithic catalyst with a supported layer of H-ZSM-5 zeolite. This article presents a study of the catalytic activity of a zeolite-containing microstructured monolith in methanol into hydrocarbons transformation. The monolith was synthesized by pressing a zeolite-containing mass followed by drying, calcining, and secondary growth of the zeolite on the monolith surface. A sample of a monolith with an average channel diameter of 0.5, 1.0, 1.5, 2.0 mm were synthesized this way. Samples of the microstructured catalyst were tested at varying temperatures from 250 to 450 °C and at varying the specific methanol feed rate from 0.65 to 2.3 kg (MeOH)/(kg (Cat) h). For this purpose, the monolithic catalyst was placed in a reactor for testing microstructured catalysts, which consisted of a pump, a temperature controller, a catalytic reactor, a condenser, a separating funnel, and a chromatograph. Varying the conditions showed that for the preferential production of gaseous C1–C4 hydrocarbons, it is advisable to carry out the reaction under the following conditions: the average diameter of the catalyst channels is 2 mm, the reaction temperature is 350 °C, the methanol feed rate is 1.65 kg (MeOH)/(kg (Cat) h). For the predominant formation of liquid hydrocarbons of the C5–C8 fraction, it is advisable to carry out the transformation of methanol into hydrocarbons under the following conditions: the average diameter of the catalyst channels is 1 mm, the reaction temperature is 350 °C, the methanol feed rate is 0.65 kg (MeOH) / (kg (Cat) h). For the predominant formation of liquid hydrocarbons of the C9–C12 fraction, it is advisable to carry out the transformation of methanol into hydrocarbons under the following conditions: the average diameter of the catalyst channels is 0.5 mm, the reaction temperature is 350 °C, and the methanol feed rate is 0.65 kg (MeOH) / (kg (Cat) h).


Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 82
Author(s):  
Reuben Marc Swart ◽  
Dominic Kibet Ronoh ◽  
Hendrik Brink ◽  
Willie Nicol

Fumaric acid is widely used in the food and beverage, pharmaceutical and polyester resin industries. Rhizopus oryzae is the most successful microorganism at excreting fumaric acid compared to all known natural and genetically modified organisms. It has previously been discovered that careful control of the glucose feed rate can eliminate the by-product formation of ethanol. Two key parameters affecting fumaric acid excretion were identified, namely the medium pH and the urea feed rate. A continuous fermentation with immobilised R. oryzae was utilised to determine the effect of these parameters. It was found that the selectivity for fumaric acid production increased at high glucose consumption rates for a pH of 4, different from the trend for pH 5 and 6, achieving a yield of 0.93 gg−1. This yield is higher than previously reported in the literature. Varying the urea feed rate to 0.255 mgL−1h−1 improved the yield of fumaric acid but experienced a lower glucose uptake rate compared to higher urea feed rates. An optimum region has been found for fumaric acid production at pH 4, a urea feed rate of 0.625 mgL−1h−1 and a glucose feed rate of 0.329 gL−1h−1.


2022 ◽  
pp. 93-102
Author(s):  
Do Duc Trung ◽  
Le Dang Ha

In this article, a study on intermittent surface grinding using aluminum oxide grinding wheel with ceramic binder is presented. The testing material is 20XH3A steel (GOST standard – Russian Federation). The testing sample has been sawn 6 grooves, with the width of each groove of 10 mm, the grooves are evenly distributed on the circumference of sample. The testing sample resembles a splined shaft. An experimental matrix of nine experiments has been built by Taguchi method, in which abrasive grain size, workpiece speed, feed rate and depth of cut were selected as input variables. At each experiment, surface roughness (Ra) and roundness error (RE) have been measured. Experimental results show that the aluminum oxide and ceramic binder grinding wheels are perfectly suitable for grinding intermittent surface of 20XH3A steel. Data Envelopment Analysis based Ranking (DEAR) method has been used to solve the multi-objective optimization problem. The results also showed that in order to simultaneously ensure minimum surface roughness and RE, abrasive grain size is 80 mesh, workpiece speed is 910 rpm, feed rate is 0.05 mm/rev and depth of cut is 0.01 mm. If evaluating the grinding process through two criteria including surface roughness and RE, depth of cut is the parameter having the greatest effect on the grinding process, followed by the influence of feed rate, workpiece speed, and abrasive grain is the parameter having the least effect on the grinding process. In addition, the effect of each input parameter on each output parameter has also been analyzed, and orientations for further works have also been recommended in this article


Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 113
Author(s):  
Tomasz Trzepieciński ◽  
Marcin Szpunar ◽  
Robert Ostrowski

The aim of this paper is to determine the optimal input parameters for the process in order to ensure the maximum formable wall angle is obtained in a conical frustum with a varying wall angle fabricated using Single Point Incremental Forming (SPIF). The test material was 0.8-mm-thick Ti-6Al-4V titanium alloy sheets, and the test used a tungsten carbide tool with a rounded tip with a radius of 4 mm. Complete workpieces were heated using hot oil with a temperature of about 200 °C, and in addition, the high rotation speed of the forming tool generated an amount of friction heat. The input parameters were tool rotational speed, feed rate, step size, and tool rotation direction. Various oil pressures were used to improve both the accuracy of the components formed and the friction heating process. On the basis of calculations performed by means of the response surface methodology, split-plot I-optimal design responses were obtained by means of polynomial regression models. Models were fitted using REstricted Maximum Likelihood (REML), and p-values are derived using the Kenward–Roger approximation. Observation of the fracture surface of Ti-6Al-4V drawpieces showed that the destruction is as a result of ductile fracture mode. Tool rotational speed and step size are the most significant factors that affect the axial force, followed by feed rate. It was also found that step size is the most significant factor that affects the in-plane SPIF force.


Author(s):  
Rogerio S. Lima

AbstractThere is a strong driving force to improve the production efficiency of thermal barrier coatings (TBCs) manufactured via air plasma spray (APS). To address this need, the high-enthalpy APS torch Axial III Plus was employed to successfully manufacture TBCs by spraying a commercial YSZ feedstock at powder feed rate of 100 g/min using an optimized set of N2/H2 spray parameters; which yielded an impressive YSZ deposition efficiency (DE) value of 70%. This exact same set of optimized spray parameters was used to manufacture the same identical YSZ TBC (over ~160 µm-thick bond-coated substrates) but at two distinct YSZ thickness levels: (i) ~420 µm-thick and (ii) ~930 µm-thick. In spite of the high YSZ feed rate and DE levels, the YSZ TBC revealed a ~14% porous (conventional looking) microstructure, without segmented cracking or horizontal delamination at both thickness levels. The bond strength values measured via the ASTM C633 standard for the ~420 µm-thick and ~930 µm-thick YSZ TBCs were ~13.0 and ~11.6 MPa (respectively); which are among at the upper end values reported in the literature. After the first objective was attained, the second key objective of this work was to evaluate the thermal insulating effectiveness of these two as-sprayed YSZ TBCs. To achieve this objective, a thermal gradient laser-rig was employed to generate a temperature reduction (ΔT) along the TBC-coated coupons under different laser power levels. These distinct laser power levels generated YSZ TBC surface temperatures varying for 1100 to 1500 °C, for the ~420 µm-thick YSZ TBC, and from 1100 to 1680 °C YSZ TBC ~930 µm-thick YSZ TBC. The respective ΔT values for both TBCs are reported. The results of this engineering paper are promising regarding the possibility of improving considerably the manufacturing efficiency of industrial quality conventional-looking porous YSZ TBCs, by using a high-enthalpy N2-based APS torch. This is the first paper published in the open literature showing R&D results of coatings manufactured via the Axial III Plus APS torch.


Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 75
Author(s):  
Rong Gen Neo ◽  
Kaiqiang Wu ◽  
Sung Chyn Tan ◽  
Wei Zhou

Cold spray technology using micron-sized particles to produce coatings is increasingly used for reparative tasks in various industries. In a cold spray setup, the gun is usually connected to a robotic arm to deposit coatings on components with complex geometries. For these components, the standoff distance used in the cold spray process has to be large enough for easy maneuverability of the gun around a small radial feature. However, a small standoff distance is commonly found in most studies, which is thought to prevent a velocity drop of the particles over a larger distance. Here, a study was carried out by measuring the Inconel 625 particle velocity at different spray distances, ranging from 3 to 40 cm. The highest average velocity of 781 m/s was found at a spray distance of 8 cm. Furthermore, a study with varying powder feed rates was also conducted. An increase in the powder feed rate was found to have a minimal effect on the particle velocity. Inconel 625 coatings deposited at the optimum standoff distance (8 cm) were found to have low porosity and high hardness. The results in this study demonstrate that a larger standoff distance can be applied without a significant drop in velocity for cold spray applications requiring high maneuverability.


This study evaluates CNC milling parameters (spindle speed, depth of cut, and feed rate) on medical-grade PMMA. A single objective analysis conducted showed that the optimal material removal rate (MRR) occurs at a spindle speed of 1250 rpm, a depth of cut of 1.2 mm, and a feed rate of 350 mm/min. The ANOVA showed that feed rate is the most significant factor towards the MRR, and spindle speed (11.83%) is the least contributing. The optimal surface roughness (Ra) occurred at spindle speed of 500 rpm, depth of cut of 1.2 mm, and feed rate of 200 mm/min. The milling factors were insignificant. A regression analysis for prediction was also conducted. Further, a multi-objective optimization was conducted using the Grey Relational Analysis. It showed that the best trade-off between the MRR and the Ra could be obtained from a combination of 1250 rpm (spindle speed), 1.2 mm (depth of cut), and 350 mm/min (feed rate). The depth of cut was the largest contributor towards the grey relational grade (54.48%), followed by the feed rate (10.36%), and finally, the spindle speed (4.28%).


2022 ◽  
Vol 9 (1) ◽  
pp. 119-134
Author(s):  
Nurhusien Hassen Mohammed ◽  
◽  
Desalegn Wogaso Wolla

<abstract> <p>Machining natural fiber reinforced polymer composite materials is one of most challenging tasks due to the material's anisotropic property, non-homogeneous structure and abrasive nature of fibers. Commonly, conventional machining of composites leads to delamination, inter-laminar cracks, fiber pull out, poor surface finish and wear of cutting tool. However, these challenges can be significantly reduced by using proper machining conditions. Thus, this research aims at optimizing machining parameters in drilling hybrid sisal-cotton fibers reinforced polyester composite for better machining performance characteristics namely better hole roundness accuracy and surface finish using Taguchi method. The effect of machining parameters including spindle speed, feed rate and drill diameter on drill hole accuracy (roundness error) and surface-roughness of the hybrid composite are evaluated. Series of experiments based on Taguchi's L<sub>16</sub> orthogonal array were performed using different ranges of machining parameters namely spindle speed (600,900, 1200, 1600 rpm), feed rate (10, 15, 20, 25 mm/min) and drill diameter (6, 7, 8, 10 mm). Hole roundness error and surface-roughness are determined using ABC digital caliper and Zeta 20 profilometer, respectively. Optimum machining condition for drilling hybrid composite material (speed: 1600 rpm, feed rate: 25 mm/min and drill diameter: 6 mm) is determined, and the results are verified by conducting confirmation test which proves that the results are reliable.</p> </abstract>


2021 ◽  
pp. 152808372110620
Author(s):  
AR Ngah ◽  
Suhad D Salman ◽  
Z Leman ◽  
SM Sapuan ◽  
MFM Alkbir ◽  
...  

Drilling is a secondary material removal and usually carried out to facilitate fastening of parts together. Drilling of composite materials is not usually a problem-free process. Issues related to delamination composite laminates need to be addressed because it introduces the stress concentration point on the composite. This study focussed on the influence of process parameters such as spindle speed, feed rate, type of drill bits and geometry on the extend of delamination experienced by the composite during the drilling process of kenaf-glass fibre-reinforced unsaturated polyester composite, and the delamination measurements were taken under a microscope. Taguchi methods and analysis of variance were employed to find the optimal parameters. From the results, the most significant parameter was the feed rate. The minimum delamination was achieved when the feed rate was 0.05 mm/rev and spindle speed was 700r/min using both types of drill bits. The quality of the drill hole using the twist drill bit has been proven to be better than the brad drill bit.


2021 ◽  
pp. 495-504
Author(s):  
Vasilica Stefan ◽  
Ana Zaica ◽  
Adrian Iosif

In this paper are presented the results of experimental research conducted in order to improve the uniformity of organic fertilizers distribution (compost and semi-fermented manure) used for soil fertilization, if the administration is done with a machine with a distributor with continuous spiral centrifugal beaters, arranged vertically. The uniformity of organic fertilizers distribution depends on a number of factors such as: the speed and angle of inclination of the distribution device, the distance between the distribution beaters, the humidity and the density of the material, wind speed, the size of the fertilizer particles. The determinations were performed under working conditions and the various parameters were the beaters speed, beaters inclination angle and the feed rate of the distribution device, choosing 3 situations (minimum, average and maximum) for each of them. Based on the obtained results, the multivariable functions of polytropic form was determined, which characterize the degree of uniformity of the spread material, function that can be the basis for the elaboration of constructive solutions to ensure the optimum uniformity of distribution.


Sign in / Sign up

Export Citation Format

Share Document