A Robust Structural Stress Method for Fatigue Analysis of Ship Structures

Author(s):  
P. Dong

Recent rapid advances in developing mesh-insensitive structural stress methods are summarized in this paper. The new structural stress methods have been demonstrated to be effective in reliably calculating structural stresses that can be correlated with fatigue behavior from simple weld details to complex structures. As a result, a master S-N curve approach has been developed and validated by a large amount weld S-N data in the literature. The applications of the present structural stress methods in a number of joint types in offshore/marine structures will be illustrated in this paper. The implications on future applications in drastically simplifying fatigue design and evaluation for offshore/marine structures will also be discussed, particularly for using very coarse finite element mesh designs in ship structures.

2005 ◽  
Vol 127 (1) ◽  
pp. 68-74 ◽  
Author(s):  
P. Dong

Recent rapid advances in developing mesh-insensitive structural stress methods are summarized in this paper. The new structural stress methods have been demonstrated to be effective in reliably calculating structural stresses that can be correlated with fatigue behavior from simple weld details to complex structures. As a result, a master S–N curve approach has been developed and validated by a large amount of weld S–N data in the literature. The applications of the present structural stress methods in a number of joint types in offshore/marine structures will be illustrated in this paper. The implications on future applications in drastically simplifying fatigue design and evaluation for offshore/marine structures will also be discussed, particularly for using very coarse finite element mesh designs in ship structures.


2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110090
Author(s):  
Peiyu He ◽  
Qinrong Qian ◽  
Yun Wang ◽  
Hong Liu ◽  
Erkuo Guo ◽  
...  

Slewing bearings are widely used in industry to provide rotary support and carry heavy load. The load-carrying capacity is one of the most important features of a slewing bearing, and needs to be calculated cautiously. This paper investigates the effect of mesh size on the finite element (FE) analysis of the carrying capacity of slewing bearings. A local finite element contact model of the slewing bearing is firstly established, and verified using Hertz contact theory. The optimal mesh size of finite element model under specified loads is determined by analyzing the maximum contact stress and the contact area. The overall FE model of the slewing bearing is established and strain tests were performed to verify the FE results. The effect of mesh size on the carrying capacity of the slewing bearing is investigated by analyzing the maximum contact load, deformation, and load distribution. This study of finite element mesh size verification provides an important guidance for the accuracy and efficiency of carrying capacity of slewing bearings.


2019 ◽  
Vol 33 (3) ◽  
pp. 1185-1193 ◽  
Author(s):  
Ghania Ikhenazen ◽  
Messaoud Saidani ◽  
Madina Kilardj

1995 ◽  
Vol 8 (6) ◽  
pp. 282-287 ◽  
Author(s):  
Tanmoy Roy ◽  
Tapan K. Sarkar ◽  
Antonije R. Djordjevic ◽  
Magdalena Salazar-Palma

Author(s):  
J. Rodriguez ◽  
M. Him

Abstract This paper presents a finite element mesh generation algorithm (PREPAT) designed to automatically discretize two-dimensional domains. The mesh generation algorithm is a mapping scheme which creates a uniform isoparametric FE model based on a pre-partitioned domain of the component. The proposed algorithm provides a faster and more accurate tool in the pre-processing phase of a Finite Element Analysis (FEA). A primary goal of the developed mesh generator is to create a finite element model requiring only essential input from the analyst. As a result, the generator code utilizes only a sketch, based on geometric primitives, and information relating to loading/boundary conditions. These conditions represents the constraints that are propagated throughout the model and the available finite elements are uniformly mapped in the resulting sub-domains. Relative advantages and limitations of the mesh generator are discussed. Examples are presented to illustrate the accuracy, efficiency and applicability of PREPAT.


Sign in / Sign up

Export Citation Format

Share Document