ASME 1991 Computers in Engineering Conference: Volume 2 — Finite Elements/Computational Geometry; Computers in Education; Robotics and Controls
Latest Publications


TOTAL DOCUMENTS

87
(FIVE YEARS 0)

H-INDEX

0
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791806234

Author(s):  
N. Fumai ◽  
C. Collet ◽  
M. Petroni ◽  
K. Roger ◽  
E. Saab ◽  
...  

Abstract A Patient Data Management System (PDMS) is being developed for use in the Intensive Care Unit (ICU) of the Montreal Children’s Hospital. The PDMS acquires real-time patient data from a network of physiological bedside monitors and facilitates the review and interpretation of this data by presenting it as graphical trends, charts and plots on a color video display. Due to the large amounts of data involved, the data storage and data management processes are an important task of the PDMS. The data management structure must integrate varied data types and provide database support for different applications, while preserving the real-time acquisition of network data. This paper outlines a new data management structure which is based primarily on OS/2’s Extended Edition relational database. The relational database design is expected to solve the query shortcomings of the previous data management structure, as well as offer support for security and concurrency. The discussion will also highlight future advantages available from a network implementation.


Author(s):  
Stephen J. Schraml ◽  
Richard J. Pearson

Abstract Experiments were conducted to study the characteristics of unsteady flow in a small, axisymmetric shock tube. These experiments have been supplemented by calculational results obtained from the SHARC hydrodynamic computer code. Early calculational results indicated that a substantial gradient in flow velocity and dynamic pressure may exist along the cross-section of the shock tube. To further investigate this phenomenon, a series of experiments was performed in which dynamic pressure measurements were made at various radii in the expansion section of the shock tube. Additional calculations with the SHARC code were also performed in which turbulence modelling, artificial viscosity and second order advection were employed. The second set of calculations agree very well with the experimental results. These results indicate that the dynamic pressure is nearly constant across the radius of the shock tube. This contradicts the early computational results which were performed with first order advection and without turbulence modelling. As a result of these findings, it was concluded that turbulence modelling was necessary to obtain accurate shock tube flow simulations.


Author(s):  
Roberto Groppetti ◽  
Giuseppe Comi

Abstract Hydro-Abrasive Jet Machining (HAJM) has demonstrated its suitability for several applications in the machining of a wide spectrum of materials (metals, polymers, ceramics, fibre reinforced composites, etc.). The paper is a contribution to the computer control, integration and optimization of HAJM process in order to establish a hierarchical control architecture and a platform for the implementation of a real-time Adaptive Control Optimization (ACO) module. The paper presents the approach followed and the main results obtained during the development and implementation of a HAJM cell and its computerized controller. A critical analysis of the process variables available in the literature is presented, in order to identify the process variables and to define a process model suitable for HAJM real-time control and optimization. Besides for HAJM computer control, in order to correlate process variables and parameters with machining results, a process model and an optimization procedure are necessary in order to avoid expensive and time-consuming experiments for the determination of optimal machining conditions. The paper presents the configuration of the cell and the specific components adopted in order to make possible a fully computerized control of the process, and the architecture of the controller, capable to manage the several logical and analogical signals from the different modules of the cell, for multiprogramming, process monitoring, controlling, process parameters predetermination, process condition multiobjective optimization. A prediction and an optimization model is presented allowing the identification of optimal machining conditions using multiobjective programming. This model is based on the definition of an economy function and a productivity function, with suitable constraints relevant to the required machining quality, the required kerfing depth and the available resources. A test case based on experimental results is discussed in order to validate the model.


Author(s):  
J. Rodriguez ◽  
M. Him

Abstract This paper presents a finite element mesh generation algorithm (PREPAT) designed to automatically discretize two-dimensional domains. The mesh generation algorithm is a mapping scheme which creates a uniform isoparametric FE model based on a pre-partitioned domain of the component. The proposed algorithm provides a faster and more accurate tool in the pre-processing phase of a Finite Element Analysis (FEA). A primary goal of the developed mesh generator is to create a finite element model requiring only essential input from the analyst. As a result, the generator code utilizes only a sketch, based on geometric primitives, and information relating to loading/boundary conditions. These conditions represents the constraints that are propagated throughout the model and the available finite elements are uniformly mapped in the resulting sub-domains. Relative advantages and limitations of the mesh generator are discussed. Examples are presented to illustrate the accuracy, efficiency and applicability of PREPAT.


Author(s):  
F. Ma ◽  
J. H. Hwang

Abstract In analyzing a nonclassically damped linear system, one common procedure is to neglect those damping terms which are nonclassical, and retain the classical ones. This approach is termed the method of approximate decoupling. For large-scale systems, the computational effort at adopting approximate decoupling is at least an order of magnitude smaller than the method of complex modes. In this paper, the error introduced by approximate decoupling is evaluated. A tight error bound, which can be computed with relative ease, is given for this method of approximate solution. The role that modal coupling plays in the control of error is clarified. If the normalized damping matrix is strongly diagonally dominant, it is shown that adequate frequency separation is not necessary to ensure small errors.


Author(s):  
John G. Cherng

Abstract This paper presents the innovative approaches that can be implemented in teaching descriptive geometry by using a Computer-Aided-Design-Drafting (CADD) software. Examples of line relations, line/surface relations, and plane/cylindrical solid intersections are given in the paper. The paper first discusses the principles of descriptive geometry, and then focuses on how these principles can be applied in a CADD environment. In addition, new methods that take advantage of CADD are also provided. The paper emphasizes creativity while solving descriptive problems by using a CADD software. Although all examples illustrated in CADKEY, the concepts revealed in this paper can be applied to other 3-D CADD software, such as AutoCAD 10 and will significantly improve the engineering student’s CADD skills.


Author(s):  
Yueh-Jaw Lin ◽  
Aaron Tegland

Abstract In recent years, walking robot research has become an important robotic research topic because walking robots possess mobility, as oppose to stationary robots. However, current walking robot research has only concentrated on even numbered legged robots. Walking robots with odd numbered legs are still lack of attention. This paper presents the study on an odd numbered legged (three-legged) walking robot — Tribot. The feasibility of three-legged walking is first investigated using computer simulation based on a scaled down tribot model. The computer display of motion simulation shows that a walking robot with three legs is feasible with a periodic gait. During the course of the feasibility study, the general design of the three-legged robot is also analyzed for various weights, weight distributions, and link lengths. In addition, the optimized design parameters and limitations are found for certain knee arrangements. These design considerations and feasibility study using computer display can serve as a general guideline for designing odd numbered legged robots.


Author(s):  
A. Meghdari ◽  
H. Sayyaadi

Abstract An optimization technique based on the well known Dynamic Programming Algorithm is applied to the motion control trajectories and path planning of multi-jointed fingers in dextrous hand designs. A three fingered hand with each finger containing four degrees of freedom is considered for analysis. After generating the kinematics and dynamics equations of such a hand, optimum values of the joints torques and velocities are computed such that the finger-tips of the hand are moved through their prescribed trajectories with the least time or/and energy to reach the object being grasped. Finally, optimal as well as feasible solutions for the multi-jointed fingers are identified and the results are presented.


Author(s):  
M. A. Hussain ◽  
M. McKee ◽  
J. Frankel

Abstract In this paper we present some preliminary numerical simulations which allow us to predict a single flaw in a simply connected body. The purpose of this investigation was to detect flaws and cracks of engineering components using the method of electrical current computed tomography (ECCT), which is used in non-destructive testing technology. As in the previous paper, we have utilized the network analogy to detect a single flaw anywhere in the object. For detection of multiple flaws, the analysis has to be refined to give consistent results.


Author(s):  
R. W. Toogood

Abstract A number of programs have been developed for the automatic symbolic generation of efficient computer code for the dynamic analysis of serial rigid and flexible link manipulators. Code for both the inverse and the direct dynamics computations can be generated. The symbolic generators allow the robot base to be given an arbitrary linear acceleration anchor angular velocity and acceleration. The efficiency of the generated code is an important consideration for simulation studies and/or implementation in control systems. This paper briefly describes the symbolic generation and simplification techniques. The added computational load due to including the base motion is discussed. Some dynamics simulation results are presented for a 3R rigid link manipulator mounted on an oscillating base, which graphically illustrates the effect of the base movement on the dynamics.


Sign in / Sign up

Export Citation Format

Share Document