Reliability Evaluations of an Offshore Platform With Pile-Soil Foundation System Due to Random Wave and Seismic Forces

Author(s):  
Minsu Park ◽  
Kenji Kawano ◽  
Yoonrak Choi ◽  
Weoncheol Koo

It has been well recognized the importance of dynamic soil-structure interaction for several structures founded on soft soils. In order to examine the effects of soil-structure interaction, the substructure method is applied to the dynamic response evaluations of offshore platform. Since the offshore platform is generally subjected to severe dynamic forces such as wave, current and seismic forces, it is very important to clarify the dynamic response characteristics for the reliable design of the platform. For the idealized three-dimensional offshore platform subjected to random waves and seismic forces with the pile-soil foundation system, the dynamic response evaluations were carried out through the modal analysis. On the other hand, the uncertainty effects of dynamic forces and structural properties play very important roles on the reliability evaluations of offshore platform. If the limit state function is given by the most critical situations of dynamic responses, the reliability evaluations of the platform can be effectively calculated by the reliability index with the results obtained from Monte Carlo Simulation (MCS) method. Since the uncertainty of the random wave and seismic forces is critical for dynamic response evaluations, it is necessary to clarify the effects of uncertainties for the reliable design of the offshore platform.

Author(s):  
P. Galvín ◽  
A. Romero ◽  
E. Moliner ◽  
D. P. Connolly ◽  
M. D. Martínez-Rodrigo

AbstractA novel numerical methodology is presented to solve the dynamic response of railway bridges under the passage of running trains, considering soil–structure interaction. It is advantageous compared to alternative approaches because it permits, (i) consideration of complex geometries for the bridge and foundations, (ii) simulation of stratified soils, and, (iii) solving the train-bridge dynamic problem at minimal computational cost. The approach uses sub-structuring to split the problem into two coupled interaction problems: the soil–foundation, and the soil–foundation–bridge systems. In the former, the foundation and surrounding soil are discretized with Finite Elements (FE), and padded with Perfectly Match Layers to avoid boundary reflections. Considering this domain, the equivalent frequency dependent dynamic stiffness and damping characteristics of the soil–foundation system are computed. For the second sub-system, the dynamic response of the structure under railway traffic is computed using a FE model with spring and dashpot elements at the support locations, which have the equivalent properties determined using the first sub-system. This soil–foundation–bridge model is solved using complex modal superposition, considering the equivalent dynamic stiffness and damping of the soil–foundation corresponding to each natural frequency. The proposed approach is then validated using both experimental measurements and an alternative Finite Element–Boundary Element (FE–BE) methodology. A strong match is found and the results discussed.


2011 ◽  
Vol 2011 ◽  
pp. 1-23 ◽  
Author(s):  
Sanaz Mahmoudpour ◽  
Reza Attarnejad ◽  
Cambyse Behnia

Analysis and design of structures subjected to arbitrary dynamic loadings especially earthquakes have been studied during past decades. In practice, the effects of soil-structure interaction on the dynamic response of structures are usually neglected. In this study, the effect of soil-structure interaction on the dynamic response of structures has been examined. The substructure method using dynamic stiffness of soil is used to analyze soil-structure system. A coupled model based on finite element method and scaled boundary finite element method is applied. Finite element method is used to analyze the structure, and scaled boundary finite element method is applied in the analysis of unbounded soil region. Due to analytical solution in the radial direction, the radiation condition is satisfied exactly. The material behavior of soil and structure is assumed to be linear. The soil region is considered as a homogeneous half-space. The analysis is performed in time domain. A computer program is prepared to analyze the soil-structure system. Comparing the results with those in literature shows the exactness and competency of the proposed method.


2019 ◽  
Vol 19 (09) ◽  
pp. 1950105
Author(s):  
Gonzalo Barrios ◽  
Vinuka Nanayakkara ◽  
Pramodya De Alwis ◽  
Nawawi Chouw

In conventional seismic design, the structure is often assumed to be fixed at the base. However, this assumption does not reflect reality. Furthermore, if the structure has close neighbors, the adjacent structures will alter the response of the structure considered. Investigations on soil–structure interaction and structure–soil–structure interaction have been performed mainly using numerical models. The present work addresses the dynamic response of adjacent single-degree-of-freedom models on a laminar box filled with sand. Impulse loads and simulated ground motions were applied. The standalone condition was also studied as a reference case. Models with different fundamental frequencies and slenderness were considered. Results from the impulse tests showed that the top displacement of the models with an adjacent structure was reduced compared with that of the standalone case. Changes in the fundamental frequency of the models due to the presence of an adjacent model were also observed. Results from ground motions showed amplification of the maximum acceleration and the top displacement of the models when both structures have a similar fundamental frequency.


2015 ◽  
Vol 141 (7) ◽  
pp. 04014177 ◽  
Author(s):  
Nicholas W. Trombetta ◽  
H. Benjamin Mason ◽  
Tara C. Hutchinson ◽  
Joshua D. Zupan ◽  
Jonathan D. Bray ◽  
...  

2014 ◽  
Vol 140 (5) ◽  
pp. 04013057 ◽  
Author(s):  
Nicholas W. Trombetta ◽  
H. Benjamin Mason ◽  
Tara C. Hutchinson ◽  
Joshua D. Zupan ◽  
Jonathan D. Bray ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document