FSI Analysis of Flow-Induced Vibration in Subsea Jumper Subject to Downstream Slug and Ocean Current

Author(s):  
Yaojun Lu ◽  
Chun Liang ◽  
Juan J. Manzano-Ruiz ◽  
Kalyana Janardhanan ◽  
Yeong-Yan Perng

This paper presents a multiphysics approach for characterizing flow-induced vibrations in a subsea jumper subject to pressure fluctuation due to downstream slugging and external vortex shedding effects due to ocean current. In this study the associated fluid properties, phase behavior, and slugging dynamics were all characterized at subsea condition using PVTSIM and OLGA programs, respectively; the outcomes were then applied to a two-way fluid-structure interaction analysis (FSI) to quantify the vibration response. To mitigate the resonant phenomenon, detailed modal analysis was also conducted to check the modal shapes and natural frequencies. Therefore, this study integrated the best practices in flow assurance study (OLGA and PVTSim), computational fluid dynamics simulation (CFD), and computational structure analysis (FEA), and provided a complete solution to the fluid-structure interaction involved in a subsea jumper. It is revealed that both the slugging flow and the external ocean current induce vibration response in a subsea jumper. Compared to the vortex-induced vibration due to the external current and the flow-induced vibration due to the internal flow, the pressure fluctuation due to the slug plays a dominant role in generating excessive vibration and fatigue failure of a subsea jumper. Although this study focused on a subsea jumper only, the same approach can be applied to subsea flowline, subsea riser, and other subsea structures.

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
S. Zhou-Bowers ◽  
D. C. Rizos

Reduced 3D dynamic fluid-structure interaction (FSI) models are proposed in this paper based on a direct time-domain B-spline boundary element method (BEM). These models are used to simulate the motion of rigid bodies in infinite or semi-infinite fluid media in real, or near real, time. B-spline impulse response function (BIRF) techniques are used within the BEM framework to compute the response of the hydrodynamic system to transient forces. Higher-order spatial and temporal discretization is used in developing the kinematic FSI model of rigid bodies and computing its BIRFs. Hydrodynamic effects on the massless rigid body generated by an arbitrary transient acceleration of the body are computed by a mere superposition of BIRFs. Finally, the dynamic models of rigid bodies including inertia effects are generated by introducing the kinematic interaction model to the governing equation of motion and solve for the response in a time-marching scheme. Verification examples are presented and demonstrate the stability, accuracy, and efficiency of the proposed technique.


Author(s):  
Yaojun Lu ◽  
Chun Liang ◽  
Juan J. Manzano-Ruiz ◽  
Kalyana Janardhanan ◽  
Yeong-Yan Perng

This paper presents a multiphysics approach for characterizing flow-induced vibrations (FIVs) in a subsea jumper subject to internal production flow, downstream slug, and ocean current. In the present study, the physical properties of production fluids and associated slugging behavior were characterized by pvtsim and olga programs under real subsea condition. Outcomes of the flow assurance studies were then taken as inputs of a full-scale two-way fluid–structure interaction (FSI) analysis to quantify the vibration response. To prevent onset of resonant risk, a detailed modal analysis has also be carried out to determine the modal shapes and natural frequencies. Such a multiphysics approach actually integrated the best practices currently available in flow assurance (olga and pvtsim), computational fluid dynamics (CFD), finite element analysis (FEA), and modal analysis, and hence provided a comprehensive solution to the FSI involved in a subsea jumper. The corresponding results indicate that both the internal production flow, downstream slugs, and the ocean current would induce vibration response in the subsea jumper. Compared to the vortex-induced vibration (VIV) due to the ocean current and the FIV due to the internal production flow, pressure fluctuation due to the downstream slug plays a dominant role in generating excessive vibration response and potential fatigue failure in the subsea jumper. Although the present study was mainly focused on the subsea jumper, the same approach can be applied to other subsea components, like subsea flowline, subsea riser, and other subsea production equipment.


Sign in / Sign up

Export Citation Format

Share Document