Economic Seafloor Massive Sulfide Mining by Japan’s Model

Author(s):  
Tetsuo Yamazaki ◽  
Yosuke Takeda ◽  
Rei Arai ◽  
Naoki Nakatani

Because of the higher Au, Ag, and Cu contents, seafloor massive sulfides (SMS) have received much attention as future commercial mining targets by private companies and nations. One of them, Solwara 1 Project in Papua New Guinea (PNG), is scheduled to start the commercial mining operation from 2018. Because the mining site is inter-island area and almost no cost is necessary for the waste disposal in PNG, the economy of the mining is expected very well. In contrast with this, because all the SMS distribution sites in Japan locate outer ocean areas and the waste disposal cost on land in Japan is very expensive, the economy of SMS mining in Japan is quite negative. In order to overcome the problems, a self-standing riser with flexible link to the sea surface platform and a primary ore separation on the seafloor prior to the ore lift-up are proposed. The improved SMS mining concept named Japan’s model is examined.

Author(s):  
Tetsuo Yamazaki ◽  
Yusuke Nakamoto ◽  
Naoki Nakatani ◽  
Rei Arai

In Papua New Guinea (PNG), a seafloor massive sulfide (SMS) mining venture has been proposed to start in 2013 and the expected high profitability was presented. However, the geophysical and social conditions are quite different from Japan’s ones. The technologies and model used for the PNG mining are difficult to apply under Japan’s conditions. The economy of SMS mining has no reality in Japan, because the tailing waste disposal is very expensive. Based on a preliminary economic evaluation of seafloor massive sulfide mining venture under Japan’s conditions, some modifications in the mining system and material flow are proposed for the improvement of the economy.


Author(s):  
Yosuke Takeda ◽  
Tetsuo Yamazaki ◽  
Rei Arai ◽  
Naoki Nakatani

Many seafloor massive sulfide (SMS) deposits have been discovered in Japan’s exclusive economic zones (EEZ). They have some useful metals and are expected to become future metal resources. In Japan, because of an expensive waste disposal cost, it seems to be difficult to realize the SMS mining. Adding a function of primary waste separation from metal-rich parts of SMS ore on seafloor by a hyrocyclone is proposed to overcome the problem. The water flow structure in a model hydrocyclone is observed in the study at first. Secondly, the performance of separation using differences in specific gravities of particles by the hydrocyclone is experimentally examined. Finally, the application of hydrocyclone in the actual sea area is examined. The result shows that 67% of larger specific gravity are collected and 67% of smaller one are rejected. From the separation efficiency, the hydrocyclone method is recognized to have a high possibility of application in the actual sea area.


2020 ◽  
Author(s):  
John Jamieson ◽  
Dennis Sanchez Mora ◽  
Ben Peterkin ◽  
Thibaut Barreyre ◽  
Javier Escartin ◽  
...  

2020 ◽  
Author(s):  
Melissa. O Anderson ◽  
Mark Hannington ◽  
Timothy McConachy ◽  
John Jamieson ◽  
Thor Hansteen ◽  
...  

2019 ◽  
Vol 114 (5) ◽  
pp. 857-896 ◽  
Author(s):  
Melissa O. Anderson ◽  
Mark D. Hannington ◽  
Timothy F. McConachy ◽  
John W. Jamieson ◽  
Maria Anders ◽  
...  

Abstract Tinakula is the first seafloor massive sulfide deposit described in the Jean Charcot troughs and is the first such deposit described in the Solomon Islands—on land or the seabed. The deposit is hosted by mafic (basaltic-andesitic) volcaniclastic rocks within a series of cinder cones along a single eruptive fissure. Extensive mapping and sampling by remotely operated vehicle, together with shallow drilling, provide insights into deposit geology and especially hydrothermal processes operating in the shallow subsurface. On the seafloor, mostly inactive chimneys and mounds cover an area of ~77,000 m2 and are partially buried by volcaniclastic sand. Mineralization is characterized by abundant barite- and sulfide-rich chimneys that formed by low-temperature (<250°C) venting over ~5,600 years. Barite-rich samples have high SiO2, Pb, and Hg contents; the sulfide chimneys are dominated by low-Fe sphalerite and are high in Cd, Ge, Sb, and Ag. Few high-temperature chimneys, including zoned chalcopyrite-sphalerite samples and rare massive chalcopyrite, are rich in As, Mo, In, and Au (up to 9.26 ppm), locally as visible gold. Below the seafloor, the mineralization includes buried intervals of sulfide-rich talus with disseminated sulfides in volcaniclastic rocks consisting mainly of lapillistone with minor tuffaceous beds and autobreccias. The volcaniclastic rocks are intensely altered and variably cemented by anhydrite with crosscutting sulfate (± minor sulfide) veins. Fluid inclusions in anhydrite and sphalerite from the footwall (to 19.3 m below seafloor; m b.s.f.) have trapping temperatures of up to 298°C with salinities close to, but slightly higher than, that of seawater (2.8–4.5 wt % NaCl equiv). These temperatures are 10° to 20°C lower than the minimum temperature of boiling at this depth (1,070–1,204 m below sea level; m b.s.l.), suggesting that the highest-temperature fluids boiled below the seafloor. The alteration is distributed in broadly conformable zones, expressed in order of increasing depth and temperature as (1) montmorillonite/nontronite, (2) nontronite + corrensite, (3) illite/smectite + pyrite, (4) illite/smectite + chamosite, and (5) chamosite + corrensite. Zones of argillic alteration are distinguished from chloritic alteration by large positive mass changes in K2O (enriched in illite/smectite), MgO (enriched in chamosite and corrensite), and Fe2O3 (enriched in pyrite associated with illite/smectite alteration). The δ18O and δD values of clay minerals confirm increasing temperature with depth, from 124° to 256°C, and interaction with seawater-dominated hydrothermal fluids at high water/rock ratios. Leaching of the volcanic host rocks and thermochemical reduction of seawater sulfate are the primary sources of sulfur, with δ34S values of sulfides, from –0.8 to 3.4‰, and those of sulfate minerals close to seawater sulfate, from 19.3 to 22.5‰. The mineralization and alteration at Tinakula are typical of a class of ancient massive sulfide deposits hosted mainly by permeable volcaniclastic rocks with broad, semiconformable alteration zones. Processes by which these deposits form have never been documented in modern seafloor massive sulfide systems, because they mostly develop below the seafloor. Our study shows how hydrothermal fluids can become focused within permeable rocks by progressive, low-temperature fluid circulation, leading to a large area (>150,000 m2) of alteration with reduced permeability close to the seafloor. In our model, overpressuring and fracturing of the sulfate- and clay-cemented volcaniclastic rocks produced the pathways for higher-temperature fluids to reach the seafloor, present now as sulfate-sulfide veins within the footwall. In the geologic record, the sulfate (anhydrite) is not preserved, leaving a broad zone of intense alteration with disseminated and stringer sulfides typical of this class of deposits.


Sign in / Sign up

Export Citation Format

Share Document