eruptive fissure
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 8)

H-INDEX

6
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Giuseppe Bilotta ◽  
Sonia Calvari ◽  
Annalisa Cappello ◽  
Claudia Corradino ◽  
Ciro Del Negro ◽  
...  

<p>On 24 December 2018 a flank eruption started on Etna from an eruptive fissure opened on the eastern side of the New Southeast Crater (NCSE) at about 3,100 m asl, which in few minutes, propagated to the south-east, overcoming the edge of the western wall of the Valle del Bove (VdB), reaching an altitude of 2,400 m asl and a total length of about 2 km. The eruption, which lasted only three days, produced lava flows from different vents along the eruptive fissure that reached a distance of about 4.2 km and covered an area of about 1 km2. The satellite monitoring of the 2018 Etna eruption was performed using the HOTSAT system using mid and thermal infrared data acquired by the Spinning Enhanced Visible and InfraRed Imager (SEVIRI), which provided minimum and maximum estimates for the lava thermal flux, the effusion rate and the lava volume. The SEVIRI-derived effusion rate estimates were used as input of the MAGFLOW model to simulate the actual lava flow field, obtaining a very good fit. We also simulated different eruptive scenarios assuming the lava emission wouldn’t run out in only three days to forecast if, when and how the lava flow could reach the inhabited areas, causing possible significant damage. </p>


2020 ◽  
Author(s):  
Vincenzo De Novellis ◽  
Francesco Casu ◽  
Claudio De Luca ◽  
Mariarosaria Manzo ◽  
Fernando Monterroso ◽  
...  

<p>Piton de la Fournaise volcano forms the southeastern part of La Réunion, an oceanic basaltic island in the southernmost part of Mascarene Basin (Indian Ocean). Five eruptions occurred at Piton in 2019, accompanied by seismic activity, lava flow, and lava fountaining. Here below, we focus on the fourth eruption occurred between August 11 and 15 on the southern-southeastern flank of the volcano, inside the Enclos Fouqué caldera. This eruption was characterized by the opening of two eruptive fissures. We retrieve the surface deformations induced by the eruptive activity through space-borne Differential Synthetic Aperture Radar Interferometry (DInSAR) measurements. First, we generated the coseismic deformation maps by applying the DInSAR technique to SAR data collected along ascending and descending orbits by the Sentinel-1 constellation of the European Copernicus Programme. The DInSAR technique allows us to analyze the deformation patterns caused by the 11 August 2019 eruption. We also retrieved the pre-eruptive deformation through the Small BAseline Subset (SBAS) DInSAR approach. Then, we modelled the DInSAR displacements to constrain the geometry and characteristics of the eruptive source. The modelling results suggest that the observed deformation can be attributed to the interaction between a shallow magma reservoir located at ~1.5-2 km depth below the summit, and the intrusion of a dike feeding the eruptive fissure inside the Enclos Fouqué caldera.</p><p><em>This work is supported by: the 2019-2021 IREA-CNR and Italian Civil Protection Department agreement; the EPOS-SP project (GA 871121); and the I-AMICA (PONa3_00363) project.</em></p>


2020 ◽  
Author(s):  
Federico Galetto ◽  
Andrew Hooper ◽  
Marco Bagnardi

<p>Western Galápagos calderas experienced repeated eruptive and non-eruptive unrest in the last decades, only partially studied. Here we investigated, using the Synthetic Aperture Radar Interferometry (InSAR) and geodetic modelling, the eruptive and the non-eruptive unrest episodes occurred in two of the less studied calderas of the western Galápagos: Alcedo and Cerro Azul. Alcedo underwent repeated non-eruptive unrest from 2007 to 2011, while Cerro Azul experienced an unrest, from 2007 to 2008, culminated in two eruptive phases from May 29th to June 11th 2008. Results highlight how Alcedo experienced two episodes of uplift due to new magma injections in its shallow magma reservoir, separated by an episode with a limited lateral propagation of magma, probably interrupted for the lack of new magma supply in the magma reservoir. Results also hint to a possible relationship between these short-term unrest episodes and the longer-term process of resurgence at Alcedo. As for Cerro Azul, we overcame unwrapping errors affecting some of the InSAR data of Cerro Azul by proposing a new method, based on the wrapped phase differences among nearby pixels, to invert the wrapped phase directly. Our results highlight how the eruption was preceded by long-term pre-eruptive inflation (October 2007 – April 2008). During the first eruptive phase, most of the magma responsible for the inflation fed the lateral propagation of a radial dike, which caused a first deflation of the magmatic reservoir. During the second eruptive phase, the further lateral propagation of the dike fed a radial eruptive fissure at the base of the edifice, causing further deflation of the magmatic reservoir. From the first to the second eruptive phase, the radial dike changed its strike propagating towards a topographic low between Cerro Azul and Sierra Negra. An increase in magma supply from the reservoir to the dike promoted the further lateral propagation of the dike, confirming the importance of a continuous supply of magma in the propagation of a dike. </p>


2020 ◽  
Author(s):  
Sonia Calvari ◽  
Giuseppe Bilotta ◽  
Alessandro Bonaccorso ◽  
Tommaso Caltabiano ◽  
Annalisa Cappello ◽  
...  

<p>The Etna flank eruption started on 24 December 2018 lasted a few days and involved the opening of an eruptive fissure, accompanied by a seismic swarm and shallow earthquakes, and by large and widespread ground deformation especially on the eastern flank of the volcano. Lava fountains and ash plume from the uppermost eruptive fissure have accompanied the opening stage causing disruption of Catania international airport, and have been followed by a quiet lava effusion within the barren Valle del Bove depression until 27 December. This is the first flank eruption occurring at Etna in the last decade, during which eruptive activity was confined to the summit craters and resulted in lava fountains and lava flow output from the crater rims. In this paper we use ground and satellite remote sensing techniques to describe the sequence of events, quantify the erupted volumes of lava, gas and tephra, and assess volcanic hazard.</p>


2020 ◽  
Author(s):  
Marco Aloisi ◽  
Alessandro Bonaccorso ◽  
Flavio Cannavò ◽  
Gilda Currenti ◽  
Salvatore Gambino

<p>In the previous EGU 2019 we presented the different data acquired by the multi-disciplinary deformation networks during the eruption of Etna on 24 December 2018, when the volcano was suddenly penetrated by a violent dyke intrusion. An eruptive fissure opened and continued to propagate southward for more than 10 hours. The situation created the fear of possible serious consequences of feeding a lava flow even at medium-low altitudes, therefore potentially hazardous for the villages and infrastructures located there. However, the propagation stopped and lava flows finished on 25 December.</p><p>In this updated study we present the effort made to model the complex eruptive process characterized by two attempts of intrusion. We inferred a first dyke starting from the sea level depth with an increasing of its dimension in the shallower part. Successively and until the early hours of 25 December, we revealed a second attempt of intrusion characterized by a dyke with a powerful opening with respect to the first dyke but that, fortunately, did not reach the free surface. We describe how different types of continuous deformation data provide complementary information on the ongoing process allowing us to model the fast intrusive process. In particular, the high-precision borehole instruments (strainmeters and tiltmeters) provided a robust early warning; the displacement field measured by high-rate GPS allowed obtaining an early but also reliable model of the source. Finally, the integration of all the continuous data constrained a more detailed and complete model and its time evolution able to represent the complex process leading to this flank eruption.</p><p> </p>


2020 ◽  
Vol 12 (6) ◽  
pp. 905 ◽  
Author(s):  
Sonia Calvari ◽  
Giuseppe Bilotta ◽  
Alessandro Bonaccorso ◽  
Tommaso Caltabiano ◽  
Annalisa Cappello ◽  
...  

The Etna flank eruption that started on 24 December 2018 lasted a few days and involved the opening of an eruptive fissure, accompanied by a seismic swarm and shallow earthquakes, significant SO2 flux release, and by large and widespread ground deformation, especially on the eastern flank of the volcano. Lava fountains and ash plumes from the uppermost eruptive fissure accompanied the opening stage, causing disruption to Catania International Airport, and were followed by a quiet lava effusion within the barren Valle del Bove depression until 27 December. This was the first flank eruption to occur at Etna in the last decade, during which eruptive activity was confined to the summit craters and resulted in lava fountains and lava flow output from the crater rims. In this paper, we used ground and satellite remote sensing techniques to describe the sequence of events, quantify the erupted volumes of lava, gas, and tephra, and assess volcanic hazards.


2019 ◽  
Vol 11 (19) ◽  
pp. 2236 ◽  
Author(s):  
Delphine Smittarello ◽  
Valérie Cayol ◽  
Virginie Pinel ◽  
Jean-Luc Froger ◽  
Aline Peltier ◽  
...  

The added value of combining InSAR and GNSS data, characterized by good spatial coverage and high temporal resolution, respectively, is evaluated based on a specific event: the propagation of the magma intrusion leading to the 26 May 2016 eruption at Piton de la Fournaise volcano (Reunion Island, France). Surface displacement is a non linear function of the geometry and location of the pressurized source of unrest, so inversions use a random search, based on a neighborhood algorithm, combined with a boundary element modeling method. We first invert InSAR and GNSS data spanning the whole event (propagation phase and eruption) to determine the final geometry of the intrusion. Random search conducted in the inversion results in two best-fit model families with similar data fits. Adding the same time-period GNSS dataset to the inversions does not significantly modify the results. Even when weighting data to provide even contributions, the fit is systematically better for descending than ascending interferograms, which might indicate an eastward flank motion. Then, we invert the GNSS time series in order to derive information on the propagation dynamics, validating our approach using a SAR image acquired during the propagation phase. We show that the GNSS time series can only be used to correctly track the magma propagation when the final intrusion geometry derived from InSAR and GNSS measurements is used as an a priori. A new method to extract part of a mesh, based on the representation of meshes as graphs, better explains the data and better accounts for the opening of the eruptive fissure than a method based on the projection of a circular pressure sources. Finally, we demonstrate that the temporal inversion of GNSS data strongly favors one family of models over an other for the final intrusion, removing the ambiguity inherent in the inversion of InSAR data.


2019 ◽  
Vol 114 (5) ◽  
pp. 857-896 ◽  
Author(s):  
Melissa O. Anderson ◽  
Mark D. Hannington ◽  
Timothy F. McConachy ◽  
John W. Jamieson ◽  
Maria Anders ◽  
...  

Abstract Tinakula is the first seafloor massive sulfide deposit described in the Jean Charcot troughs and is the first such deposit described in the Solomon Islands—on land or the seabed. The deposit is hosted by mafic (basaltic-andesitic) volcaniclastic rocks within a series of cinder cones along a single eruptive fissure. Extensive mapping and sampling by remotely operated vehicle, together with shallow drilling, provide insights into deposit geology and especially hydrothermal processes operating in the shallow subsurface. On the seafloor, mostly inactive chimneys and mounds cover an area of ~77,000 m2 and are partially buried by volcaniclastic sand. Mineralization is characterized by abundant barite- and sulfide-rich chimneys that formed by low-temperature (<250°C) venting over ~5,600 years. Barite-rich samples have high SiO2, Pb, and Hg contents; the sulfide chimneys are dominated by low-Fe sphalerite and are high in Cd, Ge, Sb, and Ag. Few high-temperature chimneys, including zoned chalcopyrite-sphalerite samples and rare massive chalcopyrite, are rich in As, Mo, In, and Au (up to 9.26 ppm), locally as visible gold. Below the seafloor, the mineralization includes buried intervals of sulfide-rich talus with disseminated sulfides in volcaniclastic rocks consisting mainly of lapillistone with minor tuffaceous beds and autobreccias. The volcaniclastic rocks are intensely altered and variably cemented by anhydrite with crosscutting sulfate (± minor sulfide) veins. Fluid inclusions in anhydrite and sphalerite from the footwall (to 19.3 m below seafloor; m b.s.f.) have trapping temperatures of up to 298°C with salinities close to, but slightly higher than, that of seawater (2.8–4.5 wt % NaCl equiv). These temperatures are 10° to 20°C lower than the minimum temperature of boiling at this depth (1,070–1,204 m below sea level; m b.s.l.), suggesting that the highest-temperature fluids boiled below the seafloor. The alteration is distributed in broadly conformable zones, expressed in order of increasing depth and temperature as (1) montmorillonite/nontronite, (2) nontronite + corrensite, (3) illite/smectite + pyrite, (4) illite/smectite + chamosite, and (5) chamosite + corrensite. Zones of argillic alteration are distinguished from chloritic alteration by large positive mass changes in K2O (enriched in illite/smectite), MgO (enriched in chamosite and corrensite), and Fe2O3 (enriched in pyrite associated with illite/smectite alteration). The δ18O and δD values of clay minerals confirm increasing temperature with depth, from 124° to 256°C, and interaction with seawater-dominated hydrothermal fluids at high water/rock ratios. Leaching of the volcanic host rocks and thermochemical reduction of seawater sulfate are the primary sources of sulfur, with δ34S values of sulfides, from –0.8 to 3.4‰, and those of sulfate minerals close to seawater sulfate, from 19.3 to 22.5‰. The mineralization and alteration at Tinakula are typical of a class of ancient massive sulfide deposits hosted mainly by permeable volcaniclastic rocks with broad, semiconformable alteration zones. Processes by which these deposits form have never been documented in modern seafloor massive sulfide systems, because they mostly develop below the seafloor. Our study shows how hydrothermal fluids can become focused within permeable rocks by progressive, low-temperature fluid circulation, leading to a large area (>150,000 m2) of alteration with reduced permeability close to the seafloor. In our model, overpressuring and fracturing of the sulfate- and clay-cemented volcaniclastic rocks produced the pathways for higher-temperature fluids to reach the seafloor, present now as sulfate-sulfide veins within the footwall. In the geologic record, the sulfate (anhydrite) is not preserved, leaving a broad zone of intense alteration with disseminated and stringer sulfides typical of this class of deposits.


2018 ◽  
Vol 10 (7) ◽  
pp. 1115 ◽  
Author(s):  
Sonia Calvari ◽  
Gaetana Ganci ◽  
Sónia Victória ◽  
Pedro Hernandez ◽  
Nemesio Perez ◽  
...  

Fogo volcano erupted in 2014–2015 producing an extensive lava flow field in the summit caldera that destroyed two villages, Portela and Bangaeira. The eruption started with powerful explosive activity, lava fountains, and a substantial ash column accompanying the opening of an eruptive fissure. Lava flows spreading from the base of the eruptive fissure produced three arterial lava flows. By a week after the start of the eruption, a master lava tube had already developed within the eruptive fissure and along the arterial flow. In this paper, we analyze the emplacement processes based on observations carried out directly on the lava flow field, remote sensing measurements carried out with a thermal camera, SO2 fluxes, and satellite images, to unravel the key factors leading to the development of lava tubes. These were responsible for the rapid expansion of lava for the ~7.9 km length of the flow field, as well as the destruction of the Portela and Bangaeira villages. The key factors leading to the development of tubes were the low topography and the steady magma supply rate along the arterial lava flow. Comparing time-averaged discharge rates (TADR) obtained from satellite and Supply Rate (SR) derived from SO2 flux data, we estimate the amount and timing of the lava flow field endogenous growth, with the aim of developing a tool that could be used for hazard assessment and risk mitigation at this and other volcanoes.


Author(s):  
Sonia Calvari ◽  
Gaetana Ganci ◽  
Sónia Silva Victória ◽  
Pedro A. Hernandez ◽  
Nemesio Perez ◽  
...  

Fogo volcano erupted in 2014-15 producing an extensive lava flow field in the summit caldera that destroyed two villages, Portela and Bangaeira. The eruption started with powerful explosive activity, lava fountains, and a substantial ash column accompanying the opening of an eruptive fissure. Lava flows spreading from the base of the eruptive fissure produced three arterial lava flows. By a week after the start of the eruption, a master lava tube had already developed within the eruptive fissure and along the arterial flow. In this paper, we analyze the emplacement processes on the basis of observations carried out directly on the lava flow field, remote sensing measurements carried out with a thermal camera, SO2 fluxes, and satellite images, in order to unravel the key factors leading to the development of lava tubes. These were responsible for the rapid expansion of lava for the ~7.9 km length of the flow field, as well as the destruction of the Portela and Bangaeira villages. The key factors leading to the development of tubes were the low topography and the steady magma supply rate along the arterial lava flow. Comparing time-averaged effusion rates (TADR) obtained from satellite and Supply Rate (SR) derived from SO2 flux data, we estimate the amount and timing of the lava flow field endogenous growth, with the aim of developing a tool that could be used for hazard assessment and risk mitigation at this and other volcanoes.


Sign in / Sign up

Export Citation Format

Share Document