Fluid Structure Interaction Simulations Involving Free Surface

2018 ◽  
Author(s):  
H. R. Díaz-Ojeda ◽  
L. M. González ◽  
F. J. Huera-Huarte

The aim of this paper is to evaluate how much affects the presence of gravity and free-surface to a flexible structure in a classical fluid structure interaction (FSI) problem typically found in off-shore problems and other oceanic applications. The base problem selected is the Turek benchmark case where a deformable plate is attached to the wake of a circular cylinder. To focus on the differences of considering free surface, a simple geometry has been selected and two different situations have been studied: the first one is the classical Turek benchmark, the second is a similar geometry but adding gravity and free surface. The free surface problem was studied placing the structure at different depths and monitoring the deformation and forces on the structure.

Author(s):  
M. H. Farahani ◽  
N. Amanifard ◽  
H. Asadi ◽  
M. Mahnama

Simulation of the fluid-structure interaction (FSI) and free surface flows includes an area of extremely challenging problems in the computational mechanics community. In this paper, a newly proposed SPH algorithm is employed to simulate FSI problems with complex free surface flows. In this way, fluid and elastic structure continua are coupled using a monolithic but explicit numerical scheme. The proposed method is similar to so-called SPH projection method and consists of three steps. The first two steps play the role of prediction, while in the third step a Poisson equation is used for both fluid and structure to impose incompressibility constraint.


Sign in / Sign up

Export Citation Format

Share Document