Fluid–structure interaction for an elastic structure interacting with free surface in a rolling tank

2014 ◽  
Vol 84 ◽  
pp. 201-212 ◽  
Author(s):  
Kwang-Jun Paik ◽  
Pablo M. Carrica
2018 ◽  
Author(s):  
H. R. Díaz-Ojeda ◽  
L. M. González ◽  
F. J. Huera-Huarte

The aim of this paper is to evaluate how much affects the presence of gravity and free-surface to a flexible structure in a classical fluid structure interaction (FSI) problem typically found in off-shore problems and other oceanic applications. The base problem selected is the Turek benchmark case where a deformable plate is attached to the wake of a circular cylinder. To focus on the differences of considering free surface, a simple geometry has been selected and two different situations have been studied: the first one is the classical Turek benchmark, the second is a similar geometry but adding gravity and free surface. The free surface problem was studied placing the structure at different depths and monitoring the deformation and forces on the structure.


Author(s):  
Manoj Kumar Gangadharan ◽  
Sriram Venkatachalam

Hydroelasticity is an important problem in the field of ocean engineering. It can be noted from most of the works published as well as theories proposed earlier that this particular problem was addressed based on the time independent/ frequency domain approach. In this paper, we propose a novel numerical method to address the fluid-structure interaction problem in time domain simulations. The hybrid numerical model proposed earlier for hydro-elasticity (Sriram and Ma, 2012) as well as for breaking waves (Sriram et al 2014) has been extended to study the problem of breaking wave-elastic structure interaction. The method involves strong coupling of Fully Nonlinear Potential Flow Theory (FNPT) and Navier Stokes (NS) equation using a moving overlapping zone in space and Runge kutta 2nd order with a predictor corrector scheme in time. The fluid structure interaction is achieved by a near strongly coupled partitioned procedure. The simulation was performed using Finite Element method (FEM) in the FNPT domain, Particle based method (Improved Meshless Local Petrov Galerkin based on Rankine source, IMPLG_R) in the NS domain and FEM for the structural dynamics part. The advantage of using this approach is due to high computational efficiency. The method has been applied to study the interaction between breaking waves and elastic wall.


Sign in / Sign up

Export Citation Format

Share Document