Out-of-Plane Deflections of Nonprismatic Curved Beam Structures Solved by the Differential Quadrature Element Method

Author(s):  
Chang-New Chen

The differential quadrature element method (DQEM) is used to solve the out-of-plane deflections of nonprismatic curved beam structures. The extended differential quadrature (EDQ) is used to discretize the governing differential equations defined on all elements, the transition conditions defined on the inter-element boundary of two adjacent elements and the boundary conditions. Numerical results obtained by DQEM are presented. They demonstrate the developed numerical solution procedure.

Author(s):  
Chang-New Chen

The development of differential quadrature element method in-plane deflection analysis model of arbitrarily curved nonprismatic beam structures was carried out. The DQEM uses the extended differential quadrature to discretize the differential eigenvalue equation defined on each element, the transition conditions defined on the inter-element boundary of two adjacent elements and the boundary conditions of the beam. Numerical results solved by the developed numerical algorithm are presented. The convergence of the developed DQEM analysis model is efficient.


Author(s):  
Chang-New Chen

The development of differential quadrature element method out-of-plane deflection analysis model of curved nonprismatic beam structures considering the effect of shear deformation was carried out. The DQEM uses the differential quadrature to discretize the governing differential equation defined on each element, the transition conditions defined on the inter-element boundary of two adjacent elements and the boundary conditions of the beam. Numerical results solved by the developed numerical algorithm are presented. The convergence of the developed DQEM analysis model is efficient.


Author(s):  
Chang-New Chen

The influence of axial force on the vibration of Euler-Bernoulli beam structures is analyzed by differential quadrature element method (DQEM) using extended differential quadrature (EDQ). The DQEM uses the differential quadrature to discretize the governing differential eigenvalue equation defined on each element, the transition conditions defined on the inter-element boundary of two adjacent elements and the boundary conditions of the beam. Numerical results solved by the developed numerical algorithm are presented. The convergence of the developed DQEM analysis model is efficient.


Author(s):  
Chang-New Chen

The influence of axially distributed force on the vibration of Euler-Bernoulli beam structures is analyzed by differential quadrature element method (DQEM) using extended differential quadrature (EDQ). The DQEM uses the differential quadrature to discretize the governing differential eigenvalue equation defined on each element, the transition conditions defined on the inter-element boundary of two adjacent elements and the boundary conditions of the beam. Numerical results solved by the developed numerical algorithm are presented. The convergence of the developed DQEM analysis model is efficient.


Author(s):  
Chang-New Chen

The development of differential quadrature element method in-plane vibration analysis model of curved nonprismatic beam structures considering the effect of shear deformation was carried out. The DQEM uses the differential quadrature to discretize the governing differential eigenvalue equation defined on each element, the transition conditions defined on the inter-element boundary of two adjacent elements and the boundary conditions of the beam. Numerical results solved by the developed numerical algorithm are presented. The convergence of the developed DQEM analysis model is efficient.


Author(s):  
Chang-New Chen

The development of differential quadrature element method out-of-plane vibration analysis model of curved nonprismatic beam structures considering the effect of shear deformation was carried out. The DQEM uses the differential quadrature to discretize the governing differential eigenvalue equation defined on each element, the transition conditions defined on the inter-element boundary of two adjacent elements and the boundary conditions of the beam. Numerical results solved by the developed numerical algorithm are presented. The convergence of the developed DQEM analysis model is efficient.


Author(s):  
Chang-New Chen

The development of differential quadrature element method in-plane deflection analysis model of curved nonprismatic beam structures considering the effect of shear deformation was carried out. The DQEM uses the differential quadrature to discretize the governing differential equation defined on each element, the transition conditions defined on the inter-element boundary of two adjacent elements and the boundary conditions of the beam. Numerical results solved by the developed numerical algorithm are presented. The convergence of the developed DQEM analysis model is efficient.


2003 ◽  
Vol 03 (02) ◽  
pp. 183-194 ◽  
Author(s):  
Chang-New Chen

The differential quadrature element method is used to solve the buckling problems of nonprismatic column structures with and without elastic foundation. The extended differential quadrature is used to discretize the governing differential eigenvalue equations defined on all elements, the transition conditions defined on the inter-element boundary of two adjacent elements and the boundary conditions. Numerical results obtained by DQEM are presented. They demonstrate the developed numerical solution procedure.


Sign in / Sign up

Export Citation Format

Share Document