governing differential equation
Recently Published Documents


TOTAL DOCUMENTS

135
(FIVE YEARS 26)

H-INDEX

19
(FIVE YEARS 1)

Author(s):  
Carlos A. Vega-Posada

A new, simple, and practical method to investigate the response of torsionally loaded piles on homogeneous or non-homogeneous multi-layered elastic soil is developed. The soil non-homogeneity is accounted for by assuming for each layer a shear modulus distribution that fits a quadratic function. The analysis of piles in multi-layered soil is carried out by subdividing the pile, at the soil-soil layer and soil-air interfaces, into multiple elements, and then using conventional matrix methods -such as those commonly implemented in structural analysis- to connect them. The governing differential equation (GDE) of an individual structural element is solved using the Differential Transformation Method (DTM). Next, the stiffness matrix is derived by applying compatibility conditions at the ends of the element. Piles partially or fully embedded in multiple layers and subjected to torsion can be analyzed in a simple manner with the proposed formulation -a tedious endeavor with other available solutions. Finally, explicit expressions for the coefficients of the matrix are provided. Four examples are presented to show the simplicity, accuracy, and capabilities of the proposed formulation.


2021 ◽  
Vol 11 (22) ◽  
pp. 10939
Author(s):  
Matjaž Skrinar ◽  
Mojmir Uranjek ◽  
Iztok Peruš ◽  
Denis Imamović

This paper derives an original finite element for the static bending analysis of a transversely cracked uniform beam resting on a two-parametric elastic foundation. In the simplified computational model based on the Euler–Bernoulli theory of small displacements, the crack is represented by a linear rotational spring connecting two elastic members. The derivations of approximate transverse displacement functions, stiffness matrix coefficients, and the load vector for a linearly distributed load along the entire beam element are based on novel cubic polynomial interpolation functions, including the second soil parameter. Moreover, all derived expressions are obtained in closed forms, which allow easy implementation in existing finite element software. Two numerical examples are presented in order to substantiate the discussed approach. They cover both possible analytical solution forms that may occur (depending on the problem parameters) from the same governing differential equation of the considered problem. Therefore, several response parameters are studied for each example (with additional emphasis on their convergence) and compared with the corresponding analytical solution, thus proving the quality of the obtained finite element.


2021 ◽  
Vol 11 (19) ◽  
pp. 9307
Author(s):  
Mohammad Momeni ◽  
Mohsen Riahi Beni ◽  
Chiara Bedon ◽  
Mohammad Amir Najafgholipour ◽  
Seyed Mehdi Dehghan ◽  
...  

The solution of the motion equation for a structural system under prescribed loading and the prediction of the induced accelerations, velocities, and displacements is of special importance in structural engineering applications. In most cases, however, it is impossible to propose an exact analytical solution, as in the case of systems subjected to stochastic input motions or forces. This is also the case of non-linear systems, where numerical approaches shall be taken into account to handle the governing differential equations. The Legendre–Galerkin matrix (LGM) method, in this regard, is one of the basic approaches to solving systems of differential equations. As a spectral method, it estimates the system response as a set of polynomials. Using Legendre’s orthogonal basis and considering Galerkin’s method, this approach transforms the governing differential equation of a system into algebraic polynomials and then solves the acquired equations which eventually yield the problem solution. In this paper, the LGM method is used to solve the motion equations of single-degree (SDOF) and multi-degree-of-freedom (MDOF) structural systems. The obtained outputs are compared with methods of exact solution (when available), or with the numerical step-by-step linear Newmark-β method. The presented results show that the LGM method offers outstanding accuracy.


Author(s):  
Dr. A. R. Gupta

Abstract: Analysis of rectangular plates is common when designing the foundation of civil, traffic, and irrigation works. The current research presents the results of the analysis of rectangular plates using the finite difference method and Finite Element Method. The results of the research verify the accuracy of the FEM and are in agreement with findings in the literature. The plate is analyzed considering it to be completely solid. The ordinary finite difference method is used to solve the governing differential equation of the plate deflection. The proposed method can be easily programmed to readily apply on a plate problem. The work covers the determination of displacement components at different points of the plate and checking the result by software (STAAD.Pro) analysis. Keywords: rectangular plate, FEM, Finite Difference Method


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mustafa Tolga Tolga Yavuz ◽  
İbrahim Özkol

Purpose This study aims to develop the governing differential equation and to analyze the free vibration of a rotating non-uniform beam having a flexible root and setting angle for variations in operating conditions and structural design parameters. Design/methodology/approach Hamiltonian principle is used to derive the flapwise bending motion of the structure, and the governing differential equations are solved numerically by using differential quadrature with satisfactory accuracy and computation time. Findings The results obtained by using the differential quadrature method (DQM) are compared to results of previous studies in the open literature to show the power of the used method. Important results affecting the dynamics characteristics of a rotating beam are tabulated and illustrated in concerned figures to show the effect of investigated design parameters and operating conditions. Originality/value The principal novelty of this paper arises from the application of the DQM to a rotating non-uniform beam with flexible root and deriving new governing differential equation including various parameters such as rotary inertia, setting angle, taper ratios, root flexibility, hub radius and rotational speed. Also, the application of the used numerical method is expressed clearly step by step with the algorithm scheme.


2021 ◽  
Author(s):  
Heenkenda Jayasinghe

The Dynamic Finite Element (DFE) method is a well-established superconvergent semianalytical method that has been used in the past to investigate the vibration behaviour of various beam-structures. Considered as a viable alternative to conventional FEM for preliminary stage modal analysis, the DFE method has consistently proven that it is capable of producing highly accurate results with a very coarse mesh; a feature that is attributed to the fact that the DFE method uses trigonometric, frequency-dependant shape functions that are based on the exact solution to the governing differential equation as opposed to the polynomial shape functions used in conventional FEM. In the past many researchers have contributed towards building a comprehensive library of DFE models for various line structural elements and configurations, which would serve as the building blocks that would help the DFE method evolve into a fullfledged, versatile tool like conventional FEM in the future. However, thus far a DFE formulation has not been developed for plate problems. Therefore, in this thesis an effort has been made for the first time to develop a DFE formulation for the realm of two-dimensional structural problems by formulating a Quasi-Exact Dynamic Finite Element (QDFE) solution to investigate the free vibration behaviour of thin single- and multi-layered, rectangular plates. As a starting point for this work, Hamiltonian mechanics and the Classical Plate Theory (CPT) are used to develop the governing differential equation for thin plates. Subsequently, a unique quasiexact solution to the governing equation is sought by following a distinct procedure that, to the best of the author‘s knowledge, has never been presented before. Through this procedure, the characteristic equation is re-arranged as the sum of two beam-like expressions and then solved for by applying the quadratic formula. The resulting quasi-exact roots are then exploited to form the trigonometric basis functions, which in turn are used to derive the frequency-dependant shape functions; the characteristic feature of the QDFE method. Once developed, the new QDFE technique is applied to determine the vibration behaviour of thin, isotropic, linearly elastic, rectangular, homogenous plates. Subsequently, it is also employed to formulate a Simplified Layerwise Quasi-Exact Dynamic Finite Element solution for the free vibration of thin, rectangular multilayered plates. In addition, the quasi-exact solution to the plate equation is also utilised to develop a Dynamic Coefficient Matrix (DCM) method to investigate the vibrational characteristics of thin, rectangular, homogeneous plates and thin, rectangular, multilayered plates. The Method of Homogenization is used as an alternative procedure to validate the results from the Simplified Layerwise Quasi-Exact Dynamic Finite Element method and the Simplified Layerwise Dynamic Coefficient Matrix method. The results from both the QDFE and DCM methods are, in general, verified for accuracy against the exact results existing in the open literature and those produced by two in-house developed conventional FEM codes and/or ANSYS® software.


2021 ◽  
Author(s):  
Heenkenda Jayasinghe

The Dynamic Finite Element (DFE) method is a well-established superconvergent semianalytical method that has been used in the past to investigate the vibration behaviour of various beam-structures. Considered as a viable alternative to conventional FEM for preliminary stage modal analysis, the DFE method has consistently proven that it is capable of producing highly accurate results with a very coarse mesh; a feature that is attributed to the fact that the DFE method uses trigonometric, frequency-dependant shape functions that are based on the exact solution to the governing differential equation as opposed to the polynomial shape functions used in conventional FEM. In the past many researchers have contributed towards building a comprehensive library of DFE models for various line structural elements and configurations, which would serve as the building blocks that would help the DFE method evolve into a fullfledged, versatile tool like conventional FEM in the future. However, thus far a DFE formulation has not been developed for plate problems. Therefore, in this thesis an effort has been made for the first time to develop a DFE formulation for the realm of two-dimensional structural problems by formulating a Quasi-Exact Dynamic Finite Element (QDFE) solution to investigate the free vibration behaviour of thin single- and multi-layered, rectangular plates. As a starting point for this work, Hamiltonian mechanics and the Classical Plate Theory (CPT) are used to develop the governing differential equation for thin plates. Subsequently, a unique quasiexact solution to the governing equation is sought by following a distinct procedure that, to the best of the author‘s knowledge, has never been presented before. Through this procedure, the characteristic equation is re-arranged as the sum of two beam-like expressions and then solved for by applying the quadratic formula. The resulting quasi-exact roots are then exploited to form the trigonometric basis functions, which in turn are used to derive the frequency-dependant shape functions; the characteristic feature of the QDFE method. Once developed, the new QDFE technique is applied to determine the vibration behaviour of thin, isotropic, linearly elastic, rectangular, homogenous plates. Subsequently, it is also employed to formulate a Simplified Layerwise Quasi-Exact Dynamic Finite Element solution for the free vibration of thin, rectangular multilayered plates. In addition, the quasi-exact solution to the plate equation is also utilised to develop a Dynamic Coefficient Matrix (DCM) method to investigate the vibrational characteristics of thin, rectangular, homogeneous plates and thin, rectangular, multilayered plates. The Method of Homogenization is used as an alternative procedure to validate the results from the Simplified Layerwise Quasi-Exact Dynamic Finite Element method and the Simplified Layerwise Dynamic Coefficient Matrix method. The results from both the QDFE and DCM methods are, in general, verified for accuracy against the exact results existing in the open literature and those produced by two in-house developed conventional FEM codes and/or ANSYS® software.


Author(s):  
Lu Zheng ◽  
Tao Deng ◽  
Qijian Liu

The transfer matrix method is applied to the buckling of end-bearing piles partially or fully embedded in a layered elastic medium with a constant coefficient of subgrade reaction for each layer. The solution of the governing differential equation for each pile segment can be expressed as the product of a fourth-order matrix and a coefficient determinant. Using the transfer matrix method and combining the boundary conditions at both ends of the pile, the buckling load is obtained by solving the eigenvalue equation. A parametric study is performed to investigate the effects of the properties of the soil–pile system on the stability capacity of the pile. It is shown that the effects of the embedment ratio, soil layer thickness, and soil stiffness on the buckling of piles are quite significant. Several calculation examples are presented to verify the present method.


Author(s):  
Zhaochun Teng ◽  
Pengfei Xi

The properties of functionally gradient materials (FGM) are closely related to porosity, which has effect on FGM's elastic modulus, Poisson's ratio, density, etc. Based on the classical theory of thin plates and Hamilton principle, the mathematical model of free vibration and buckling of FGM porous rectangular plates with compression on four sides is established. Then the dimensionless form of the governing differential equation is also obtained. The dimensionless governing differential equation and its boundary conditions are transformed by differential transformation method (DTM). After iterative convergence, the dimensionless natural frequencies and critical buckling loads of the FGM porous rectangular plate are obtained. The problem is reduced to the free vibration of FGM rectangular plate with zero porosity and compared with its exact solution. It is found that DTM gives high accuracy result. The validity of the method is verified in solving the free vibration and buckling problems of the porous FGM rectangular plates with compression on four sides. The results show that the elastic modulus of FGM porous rectangular plate decreases with the increase of gradient index and porosity. Furthermore, the effects of gradient index and porosity on dimensionless natural frequencies and critical buckling loads are further analyzed under different boundary conditions with constant aspect ratio, and the effects of aspect ratio and load on dimensionless natural frequencies under different boundary conditions.


2021 ◽  
Vol 408 ◽  
pp. 99-107
Author(s):  
Ramoshweu Solomon Lebelo ◽  
Radley Kebarapetse Mahlobo ◽  
Samuel Olumide Adesanya

Thermal stability in a stockpile of reactive materials is analyzed in this article. The combustion process is modelled in a long cylindrical pipe that is assumed to lose heat to the surrounding environment by convection and radiation. The study of effects of different kinetic parameters embedded on the governing differential equation, makes it easier to investigate the complicated combustion process. The combustion process results with nonlinear molecular interactions and as a result it is not easy to solve the differential equation exactly, and therefore the numerical approach by using the Finite Difference Method (FDM) is applied. The numerical solutions are depicted graphically for each parameter’s effect on the temperature of the system. In general, the results indicate that kinetic parameters like the reaction rate promote the exothermic chemical reaction process by increasing the temperature profiles, whilst kinetic parameters such as the order of the reaction show the tendency to retard the combustion process by lowering the temperature of the system.


Sign in / Sign up

Export Citation Format

Share Document