Failure Assessment Using XFEM for the Austenitic Stainless Steel Pipe With the Circumferential Crack Subjected to Bending and Torque

Author(s):  
Yohei Ono ◽  
Michiya Sakai

Abstract Failure assessment of a pipe with a circumferential crack in a nuclear power plant has to conform to the Rules on Fitness for Service for Nuclear Power Plants published by JSME (The Japan Society of Mechanical Engineering) [1] in Japan. Based on the rules, the applied stresses considered in the failure assessment of the pipe using limit load assessment are membrane, bending, and thermal stresses. The failure assessment focuses only on mode I. In actual plants, depending on the piping system, there is a possibility that torsional stress [2] is applied to the pipe, in addition to membrane, bending, and thermal stresses. Under such a load condition, the crack opening mode will be mixed-mode. In ASME Boiler & Pressure Vessel Code section XI, the bending and torsional moment are considered in failure assessment of the pipe. Therefore, it is important to establish the failure assessment method for the pipe with the crack under mixed-mode. In this study, the XFEM (extended Finite Element Method) [3][4] was applied to assess failure of the austenitic stainless steel pipe (Type 304) with a circumferential crack subjected to bending and torsional moment. XFEM does not require elemental division considering the crack shape and its propagation path. Therefore, the time and cost for developing the analysis model can be reduced compared with conventional FEA (Finite Element Analysis). Fracture test results conducted under two conditions were used the analysis (Specimen No. TP1 and TP2) for determining the energy release rate for crack propagation and verifying the analysis results. The difference between the two tests was the ratio of torsional moment to bending moment. The ratios in TP1 and TP 2 were 0.6 and 1.2, respectively. A parametric analysis was conducted to determine the critical equivalent strain energy release rate required for crack initiation and propagation by comparison with TP1 results. The determined critical equivalent strain energy release rate was verified by comparison with TP2 results. In response to the above considerations, the decreasing load due to crack propagation in the fracture tests under mixed-mode condition was simulated by XFEM, and the maximum load, bending moment, and torsional moment were predicted within the margin of error of 6.1%.

2015 ◽  
Vol 45 (3) ◽  
pp. 69-82
Author(s):  
V. Rizov

Abstract Static fracture in foam core sandwich structures under mixed mode I/II/III loading conditions was studied theoretically. In order to generate such loading conditions, a thread guide was used to impose in- plane displacements of the lower crack arm of a sandwich Split Cantilever Beam (SCB). The upper crack arm was loaded by a transverse force. A three-dimensional finite element model of the imposed displacement sandwich SCB configuration was developed. The fracture was studied applying the concepts of linear-elastic fracture mechanics. The strain energy release rate mode components distribution along the crack front was analyzed using the virtual crack closure technique. The influence of the imposed displacement magnitude and the crack length on the fracture was evaluated. The effect of the sandwich core material on the mixed-mode I/II/III fracture was studied. For this purpose, finite element simulations were carried-out assuming that the core is made by different rigid cellular foams. It was found that the strain energy release rate decreases when the foam density increases.


2012 ◽  
Vol 42 (4) ◽  
pp. 41-52 ◽  
Author(s):  
Angel S. Mladensky ◽  
Victor I. Rizov

Abstract Mixed mode II/III crack investigation in cantilever bilayered unidirectional fiber reinforced composite beam is reported. The crack is situated between the layers. The two crack arms have different widths. Formula for the strain energy release rate is obtained by the linear elastic fracture mechanics methods using the magnitude of the applied forces, geometrical characteristics of the cross-section, and the elastic moduli of the layers. An equivalent shear modulus of the un-cracked beam portion is used. Several diagrams illustrating the results of parametrical analysis of the strain energy release rate are presented. The paper is a part of a research in the field of fracture behaviour of composite beams.


2015 ◽  
Vol 11 (1) ◽  
pp. 75-87 ◽  
Author(s):  
Victor Rizov

Purpose – The purpose of this paper is to study theoretically the ability of the prestressed foam core composite sandwich Split Cantilever Beam (SCB) for generating mixed-mode II/III crack loading conditions (the mode II fracture was provided by prestressing the beam using imposed transverse displacements). Design/methodology/approach – The concepts of linear-elastic fracture mechanics were used. The fracture behavior was studied in terms of the strain energy release rate. For this purpose, a three-dimensional finite element model of the prestressed sandwich SCB was developed. The virtual crack closure technique was applied in order to analyze the strain energy release rate mode components distribution along the crack front. Findings – It was found that the distribution is non-symmetric. The analysis revealed that a wide mixed-mode II/III ratios range can be generated by varying the magnitude of the imposed transverse displacement. The influence of the sandwich core material on the mixed-mode II/III fracture behavior was investigated. For this purpose, three sandwich beam configurations with different rigid cellular foam core were simulated. It was found that the strain energy release rate decreases when the foam core density increases. Originality/value – For the first time, a mixed-mode II/III fracture study of foam core composite sandwich beam is performed.


2004 ◽  
Vol 127 (3) ◽  
pp. 268-275 ◽  
Author(s):  
Andrew A. O. Tay

Ever since the discovery of the “popcorn” failure of plastic-encapsulated integrated-circuit (IC) packages in the 1980s, much effort has been devoted to understanding the failure mechanism and modeling it. It has been established that such failures are due to the combined effects of thermal stresses and hygrostresses that arise during solder reflow of plastic IC packages. In recent years interfacial fracture mechanics has been applied successfully to the analysis of delamination or crack propagation along interfaces in plastic IC packages. This paper presents some fundamental aspects of interfacial fracture mechanics and describes some of the numerical techniques available for calculating the strain energy release rate and mode mixity at the tips of cracks at interfaces in plastic-encapsulated IC packages. A method of calculating the combined effects of thermal stress and hygrostress on the energy release rate is also described. Some case studies are presented that illustrate how the techniques are applied to predicting delaminaton in IC packages. Some experimental verification of predictive methodology is also presented.


Sign in / Sign up

Export Citation Format

Share Document