Latest Publications





Published By Iop Publishing

1361-6528, 0957-4484

2022 ◽  
Qian He ◽  
Junkai Ren ◽  
Yaodong Liu

Abstract In this study, carbon dots (CDs) synthesized by hydrothermal method with amino-rich surface exhibit tunable fluorescence across entire visible range by simply controlling the concentration. A comprehensive comparison has been performed for the first time between concentration-induced aggregation of the single-type CDs and electrostatic-induced agglomeration of opposite-charged CDs in terms of their fluorescence properties. Experimental results show that both the aggregation of CDs and internal absorption filtration are possible causes of the concentration-dependent fluorescence emission. Subsequently, the inter distance of adjacent CDs in their aggregates was enlarged by forming rigid double-stranded DNA (dsDNA) between adjacent CDs through base pairing. It is clear that the contact of CDs induces the changes of fluorescence emission and light absorption. Through a better understanding of the mechanisms behind concentration-induced multicolor emission, this work can provide a novel strategy to develop the advanced applications of CDs.

2022 ◽  
Yu Zhang ◽  
Qiang Liu ◽  
Yu Liu ◽  
Jin Tong ◽  
Zhongwei Huang ◽  

Abstract A green method for the synthesis of in-situ Cu paste is developed. Cu particles are prepared through chemical reduction by selecting a special copper source, reducing agent, and solvent. Then the reaction solution is directly concentrated to obtain an in-situ Cu paste. The synthesis of Cu particles and the preparation of Cu paste are conducted simultaneously, and the process of separation, purification, drying, storage, and re-dispersion of powder are reduced. Particles are not directly exposed to air, thus the oxidation of micro/nano-Cu is effectively prevented, and the agglomeration of particles caused by drying and dispersion operations is simultaneously reduced. Furthermore, the proposed method has a certain universality, and different types of Cu sources can be used to prepare in-situ paste with different sizes and morphologies. The entire preparation process is simple, efficient, green, and the yield can reach 99.99%, which breaks through the bottleneck of the application of traditional micro/nano-Cu materials. Copper acetate based in-situ paste is sintered for 30 min at 260 °C and 2 MPa in a reducing atmosphere. The shear strength, resistivity, and thermal conductivity reach 55.26 MPa, 4.01 × 10-8 Ω·m, and 92.75 W/(m·K), respectively, which could meet the interconnection application of power semiconductor devices.

2022 ◽  
Renyun Zhang ◽  
Jonas Ortegren ◽  
Magnus Hummelgard ◽  
Martin Olsen ◽  
Henrik A Andersson ◽  

Abstract Material development is essential when studying triboelectric nanogenerators (TENGs). This importance is because the performance of TENGs are highly dependent on the properties of the utilized triboelectric materials. To obtain more specific properties, composites have been developed that combine the features of their components. According to Google Scholar, 55% of published papers related to triboelectric nanogenerators have utilized or mentioned composites. This number is 34.5% if one searches with the keyword nanocomposites instead of composites. The importance of composites is because they can exhibit new dielectric properties, better mechanical strength, enhanced charge affinities, etc. Therefore, the development of new composites has great importance in TENG studies. In this paper, we review the production of nanocomposites, the types of nanocomposites, and their application in TENG studies. This review gives an overview of how nanocomposites boost the performance of TENGs and provides guidance for future studies.

2022 ◽  
Xuewen Zheng ◽  
Haifeng Cong ◽  
Ting Yang ◽  
Kemeng Ji ◽  
Chengyang Wang ◽  

Abstract Two-dimensional (2D) materials with mono or few layers have wide application prospects, including electronic, optoelectronic, and interface functional coatings in addition to energy conversion and storage applications. However, the exfoliation of such materials is still challenging due to their low yield, high cost, and poor ecological safety in preparation. Herein, a safe and efficient solid suspension-improving method was proposed to exfoliate hexagonal boron nitride nanosheets (hBNNSs) in a large yield. The method entails adding a permeation barrier layer in the solvothermal kettle, thus prolonging the contact time between the solvent and hexagonal boron nitride (hBN) nanosheetand improving the stripping efficiency without the need for mechanical agitation. In addition, the proposed method selectively utilizes a matching solvent that can reduce the stripping energy of the material and employs a high-temperature steam shearing process. Compared with other methods, the exfoliating yield of hBNNSs is up to 42.3% at 150°C for 12 h, and the strategy is applicable to other 2D materials. In application, the ionic conductivity of a PEO/hBNNSs composite electrolytes reached 2.18×10−4 S cm−1 at 60°C. Overall, a versatile and effective method for stripping 2D materials in addition to a new safe energy management strategy were provided.

2022 ◽  
Mize Ouyang ◽  
liping zhao ◽  
Jing Liu ◽  
Peng Zhang

Abstract Self-supported electrocatalytic thin films consist 3D conducting network and well-embedded electrocatalysts, which endows the advantage in mass flow kinetics and durability for large-scale water splitting. Synthesis of such self-supported electrode still remains a big challenge due to the difficulty in the control over the 3D conducting network and the simultaneous growth of catalyst with well attachment on the conducting fibers. Herein, a self-supported [email protected] nanofibers ([email protected] NF) film has been successfully fabricated with outstanding electrocatalytic performance under optimized pyrolysis temperature and precursors mass ratio conditions. During the carbonation process, the Mo2C nanoparticles (~16 nm) are simultaneously grown and well dispersed on the inter-connected carbon nanofibers, which form 3D conducting network. The as-formed 3D carbon network is strong enough to support direct electrocatalytic application without additional ink or supporting substrates. This particular electrode structure facilitates easy access to the active catalytic sites, electron transfer, and hydrogen diffusion, resulting in the high hydrogen evolution reaction (HER) activity. A low overpotential of 86 mV is needed to achieve 10 mA cm-2 current density with outstanding kinetics metric (Tafel 43 mV dec-1) in 1M KOH. Additionally, the self-supported [email protected] NF film, a binder-free electrode, exhibits extraordinary stability of more than 340 h.

2022 ◽  
Chen Chen ◽  
Lei Nie ◽  
Yizhe Huang ◽  
Shuang Xi ◽  
Xingyue Liu ◽  

Abstract Herein, we develop a novel strategy for preparing all-inorganic cesium lead halide (CsPbX3, X= Cl, Br, I) perovskite nanocrystals (NCs)@Zn-based metal-organic framework (MOF) composites through interfacial synthesis. The successful embedding of fluorescent perovskite NCs in Zn-MOFs is due to the in-situ confined growth, which is attributed to the re-nucleation of water-triggered phase transformation from Cs4PbBr6 to CsPbBr3. The controllable synthesis of mixed-halide based composites with various emission wavelength can be achieved by adding the desired amount of halide (Cl or I) salts in the re-nucleation process. More importantly, the anion exchange reaction is inhibited among various composites with different halogen atoms by being trapped in MOFs. Besides, a white light-emitting diode (WLED) is produced using a blue LED chip with the green-emitting and red-emitting composites, which has a color coordinate of (0.3291, 0.3272) and a wide color gamut. This work provides a novel route to achieving perovskite NCs growth in MOFs, which also can be extended to the other NCs embedded in frames as well.

2022 ◽  
Huang Hsiang Lin ◽  
Alexander Croy ◽  
Rafael Gutierrez ◽  
Christian Joachim ◽  
Gianaurelio Cuniberti

Abstract We perform molecular dynamics simulations to study the collective rotation of a graphene nanodisk functionalized on its circumference by tert-butylphenyl chemical groups in interaction with a molecule-gear hexa-tert-butylphenylbenzene supported by a Cu(111) surface. The rotational motion can be categorized underdriving, driving and overdriving regimes calculating the locking coefficient of this machinery as a function of external torque applied. Moreover, the rotational friction with the surface of both the phononic and electronic contributions is investigated. It shows that for small size graphene nanodisks the phononic friction is the main contribution, whereas the electronic one dominates for the larger disks putting constrains on the experimental way of achieving the transfer of rotation from a graphene nanodisk to single molecule-gear.

2022 ◽  
Muhammad Amin Padhiar ◽  
Minqiang Wang ◽  
Yongqiang Ji ◽  
Zhi Yang ◽  
Arshad Saleem Bhatti

Abstract In recent years, significant progress has been made in the red and green perovskite quantum dots (PQDs) based light-emitting devices. However, a scarcity of blue-emitting devices that are extremely efficient precludes their research and development for optoelectronic applications. Taking advantage of tunable bandgaps of PQDs over the entire visible spectrum, herein we tune optical properties of CSPbBr3 by mixing Nd3+ trivalent lanthanide halide cations for blue light-emitting devices. The CsPbBr3 PQDs doped with Nd3+ trivalent lanthanide halide cations emitted strong photoemission from green into the blue region. By adjusting their doping concentration, a tunable wavelength from (515 nm) to (450 nm) was achieved with FWHM from (37.83 nm) to (16.6 nm). We simultaneously observed PL linewidth broadening thermal quenching of PL and the blue shift of the optical bandgap from temperature-dependent PL studies. The Nd3+ cations into CsPbBr3 PQDs more efficiently reduced non-radiative recombination. As a result of the efficient removal of defects from PQDs, the photoluminescence quantum yield (PLQY) has been significantly increased to 91% in the blue-emitting region. Significantly, Nd3+ PQDs exhibit excellent long-term stability against the external environment, including water, temperature, and ultraviolet light irradiation. Moreover, we successfully transformed Nd3+ doped PQDs into highly fluorescent nanocomposites. Incorporating these findings, we fabricate and test a stable blue light-emitting LED with EL emission at (462 nm), (475 nm), and successfully produce white light emission from Nd3+ doped nanocomposites with a CIE at (0.32, 0.34), respectively. The findings imply that low-cost Nd3+ doped perovskites may be attractive as light converters in LCDs with a broad color gamut.

2022 ◽  
Du Xiang ◽  
Yi Cao ◽  
Kun Wang ◽  
Zichao Han ◽  
Tao Liu ◽  

Abstract Two-dimensional (2D) interface plays a predominate role in determining the performance of a device that is configured as a van der Waals heterostructure (vdWH). Intensive efforts have been devoted to suppressing the emergence of interfacial states during vdWH stacking process, which facilitates the charge interaction and transfer between the heterostructure layers. However, the effective generation and modulation of the vdWH interfacial states could give rise to a new design and architecture of 2D functional devices. Here, we report a 2D non-volatile vdWH memory device enabled by the artificially created interfacial states between hexagonal boron nitride (hBN) and molybdenum ditelluride (MoTe2). The memory originates from the microscopically coupled optical and electrical responses of the vdWH, with the high reliability reflected by its long data retention time over 10^4 s and large write-erase cyclic number exceeding 100. Moreover, the storage currents in the memory can be precisely controlled by the writing and erasing gates, demonstrating the tunability of its storage states. The vdWH memory also exhibits excellent robustness with wide temperature endurance window from 100 K to 380 K, illustrating its potential application in harsh environment. Our findings promise interfacial-states engineering as a powerful approach to realize high performance vdWH memory device, which opens up new opportunities for its application in 2D electronics and optoelectronics.

Sign in / Sign up

Export Citation Format

Share Document