scholarly journals Toward enhancing the distributed video coder under a multiview video codec framework

2016 ◽  
Vol 25 (6) ◽  
pp. 063022
Author(s):  
Shih-Chieh Lee ◽  
Jiann-Jone Chen ◽  
Yao-Hong Tsai ◽  
Chin-Hua Chen
2018 ◽  
Vol 78 (6) ◽  
pp. 6701-6720
Author(s):  
Bruhanth Mallik ◽  
Akbar Sheikh-Akbari ◽  
Ah-Lian Kor

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Shiping Zhu ◽  
Dongyu Zhao ◽  
Ling Zhang

Multiview video which is one of the main types of three-dimensional (3D) video signals, captured by a set of video cameras from various viewpoints, has attracted much interest recently. Data compression for multiview video has become a major issue. In this paper, a novel high efficiency fractal multiview video codec is proposed. Firstly, intraframe algorithm based on the H.264/AVC intraprediction modes and combining fractal and motion compensation (CFMC) algorithm in which range blocks are predicted by domain blocks in the previously decoded frame using translational motion with gray value transformation is proposed for compressing the anchor viewpoint video. Then temporal-spatial prediction structure and fast disparity estimation algorithm exploiting parallax distribution constraints are designed to compress the multiview video data. The proposed fractal multiview video codec can exploit temporal and spatial correlations adequately. Experimental results show that it can obtain about 0.36 dB increase in the decoding quality and 36.21% decrease in encoding bitrate compared with JMVC8.5, and the encoding time is saved by 95.71%. The rate-distortion comparisons with other multiview video coding methods also demonstrate the superiority of the proposed scheme.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Shiping Zhu ◽  
Liyun Li ◽  
Juqiang Chen ◽  
Kamel Belloulata

Multiview video consists of multiple views of the same scene. They require enormous amount of data to achieve high image quality, which makes it indispensable to compress multiview video. Therefore, data compression is a major issue for multiviews. In this paper, we explore an efficient fractal video codec to compress multiviews. The proposed scheme first compresses a view-dependent geometry of the base view using fractal video encoder with homogeneous region condition. With the extended fractional pel motion estimation algorithm and fast disparity estimation algorithm, it then generates prediction images of other views. The prediction image uses the image-based rendering techniques based on the decoded video. And the residual signals are obtained by the prediction image and the original image. Finally, it encodes residual signals by the fractal video encoder. The idea is also to exploit the statistical dependencies from both temporal and interview reference pictures for motion compensated prediction. Experimental results show that the proposed algorithm is consistently better than JMVC8.5, with 62.25% bit rate decrease and 0.37 dB PSNR increase based on the Bjontegaard metric, and the total encoding time (TET) of the proposed algorithm is reduced by 92%.


Author(s):  
Vladan Velisavljevic ◽  
Jacob Chakareski ◽  
Vladimir Stankovic
Keyword(s):  

2011 ◽  
Author(s):  
Jungdong Seo ◽  
Donghyun Kim ◽  
Seungchul Ryu ◽  
Kwanghoon Sohn
Keyword(s):  

2020 ◽  
Vol 96 (3s) ◽  
pp. 89-96
Author(s):  
А.А. Беляев ◽  
Я.Я. Петричкович ◽  
Т.В. Солохина ◽  
И.А. Беляев

Рассмотрены особенности архитектуры и основные характеристики аппаратного видеокодека по стандарту H.264, входящего в состав микросхемы 1892ВМ14Я (MCom-02). Описан механизм синхронизации потоков данных на основе набора флагов событий. Приведены экспериментальные результаты измерения характеристик производительности разработанного видеокодека на реальных видеосюжетах при различных форматах передаваемого изображения. The paper considers main architectural features and characteristics of H.264 hardware video codec IP-core as a part of MCom- 02 system-on-chip (SoC). Bedides, it presents data flow synchronization mechanism based on event flags set, as well as experimental results of performance measurements for the designed video codec IP-core obtained for different video sequences and different image formats.


Sign in / Sign up

Export Citation Format

Share Document