Block-level fast coding scheme for depth maps in three-dimensional high efficiency video coding

2018 ◽  
Vol 27 (01) ◽  
pp. 1 ◽  
Author(s):  
Mário Saldanha ◽  
Gustavo Sanchez ◽  
César Marcon ◽  
Luciano Agostini
Entropy ◽  
2019 ◽  
Vol 21 (2) ◽  
pp. 165 ◽  
Author(s):  
Xiantao Jiang ◽  
Tian Song ◽  
Daqi Zhu ◽  
Takafumi Katayama ◽  
Lu Wang

Perceptual video coding (PVC) can provide a lower bitrate with the same visual quality compared with traditional H.265/high efficiency video coding (HEVC). In this work, a novel H.265/HEVC-compliant PVC framework is proposed based on the video saliency model. Firstly, both an effective and efficient spatiotemporal saliency model is used to generate a video saliency map. Secondly, a perceptual coding scheme is developed based on the saliency map. A saliency-based quantization control algorithm is proposed to reduce the bitrate. Finally, the simulation results demonstrate that the proposed perceptual coding scheme shows its superiority in objective and subjective tests, achieving up to a 9.46% bitrate reduction with negligible subjective and objective quality loss. The advantage of the proposed method is the high quality adapted for a high-definition video application.


Author(s):  
Carl James Debono ◽  
Gloria-Anne Ellul

The Long Term Evolution (LTE) cellular technology provides higher data rates than its predecessor technologies. This advancement paves the way for more data services, including improved multimedia services. Three-dimensional (3D) video transmission is one such service that can benefit from LTE deployment. For a positive uptake of 3D video transmission, the network must provide a good Quality of Service (QoS). In this paper the authors evaluate the LTE network's performance when transmitting Multi-view Video Coding (MVC) using simulcast and inter-view prediction coding. Furthermore, the authors evaluate the system using both the H.264/AVC (Advanced Video Coding) and the more recent High Efficiency Video Coding (HEVC) and their MVC extensions. Results show that, in an urban environment, LTE can accommodate a maximum of 93 users per cell, with adequate QoS, when transmitting 3D HEVC video at Common Intermediate Format (CIF) resolution. Moreover, cross-layer techniques can be used to reduce the QoS degradation as the user moves away from the eNodeB by transmitting lower resolution video.


2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Mengmeng Zhang ◽  
Hongyun Lu ◽  
Huihui Bai

A quality scalable extension design is proposed for the upcoming 3D video on the emerging standard for High Efficiency Video Coding (HEVC). A novel interlayer simplified depth coding (SDC) prediction tool is added to reduce the amount of bits for depth maps representation by exploiting the correlation between coding layers. To further improve the coding performance, the coded prediction quadtree and texture data from corresponding SDC-coded blocks in the base layer can be used in interlayer simplified depth coding. In the proposed design, the multiloop decoder solution is also extended into the proposed scalable scenario for texture views and depth maps, and will be achieved by the interlayer texture prediction method. The experimental results indicate that the average Bjøntegaard Delta bitrate decrease of 54.4% can be gained in interlayer simplified depth coding prediction tool on multiloop decoder solution compared with simulcast. Consequently, significant rate savings confirm that the proposed method achieves better performance.


2016 ◽  
Vol 25 (3) ◽  
pp. 033023 ◽  
Author(s):  
Hong-Bin Zhang ◽  
Chang-Hong Fu ◽  
Yui-Lam Chan ◽  
Sik-Ho Tsang ◽  
Wan-Chi Siu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document