scholarly journals Polarized light Monte Carlo analysis of birefringence-induced depolarization in biological tissues

Author(s):  
Noé Ortega-Quijano ◽  
Félix Fanjul-Vélez ◽  
Irene Salas-García ◽  
José Luis Arce-Diego
2022 ◽  
Author(s):  
Shijie Yan ◽  
Steven L Jacques ◽  
Jessica C. Ramella-Roman ◽  
Qianqian Fang

Significance: Monte Carlo (MC) methods have been applied for studying interactions between polarized light and biological tissues, but most existing MC codes supporting polarization modeling can only simulate homogeneous or multi-layered domains, resulting in approximations when handling realistic tissue structures. Aim: Over the past decade, the speed of MC simulations has seen dramatic improvement with massively-parallel computing techniques. Developing hardware-accelerated MC simulation algorithms that can accurately model polarized light inside 3-D heterogeneous tissues can greatly expand the utility of polarization in biophotonics applications. Approach: Here we report a highly efficient polarized MC algorithm capable of modeling arbitrarily complex media defined over a voxelated domain. Each voxel of the domain can be associated with spherical scatters of various radii and densities. The Stokes vector of each simulated photon packet is updated through photon propagation, creating spatially resolved polarization measurements over the detectors or domain surface. Results: We have implemented this algorithm in our widely disseminated MC simulator, Monte Carlo eXtreme (MCX). It is validated by comparing with a reference CPU-based simulator in both homogeneous and layered domains, showing excellent agreement and a 931-fold speedup. Conclusion: The polarization-enabled MCX (pMCX) offers biophotonics community an efficient tool to explore polarized light in bio-tissues, and is freely available at http://mcx.space/.


Author(s):  
V.V. DREMIN ◽  
E.V. ZHARKIKH

This paper provides a brief overview of approaches for modeling the interaction of polarized light with turbid media. This paper presents several implementations of Monte Carlo programs that track the polarization state of scattered light. Several classes of models based on the Stokes–Muller formalism and the Jones formalism are considered. Their advantages and disadvantages are analyzed.


1998 ◽  
Vol 37 (03) ◽  
pp. 235-238 ◽  
Author(s):  
M. El-Taha ◽  
D. E. Clark

AbstractA Logistic-Normal random variable (Y) is obtained from a Normal random variable (X) by the relation Y = (ex)/(1 + ex). In Monte-Carlo analysis of decision trees, Logistic-Normal random variates may be used to model the branching probabilities. In some cases, the probabilities to be modeled may not be independent, and a method for generating correlated Logistic-Normal random variates would be useful. A technique for generating correlated Normal random variates has been previously described. Using Taylor Series approximations and the algebraic definitions of variance and covariance, we describe methods for estimating the means, variances, and covariances of Normal random variates which, after translation using the above formula, will result in Logistic-Normal random variates having approximately the desired means, variances, and covariances. Multiple simulations of the method using the Mathematica computer algebra system show satisfactory agreement with the theoretical results.


1996 ◽  
Author(s):  
Iain D. Boyd ◽  
Xiaoming Liu ◽  
Jitendra Balakrishnan

2021 ◽  
Author(s):  
Igor Meglinski ◽  
Liliya Trifonyuk ◽  
Victor Bachinsky ◽  
Oleh Vanchulyak ◽  
Boris Bodnar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document