polarization state
Recently Published Documents


TOTAL DOCUMENTS

964
(FIVE YEARS 242)

H-INDEX

40
(FIVE YEARS 7)

Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 243
Author(s):  
Rui-Jia Xu ◽  
Yu-Sheng Lin

In recent years, tunable metamaterials have attracted intensive research interest due to their outstanding characteristics, which are dependent on the geometrical dimensions rather than the material composition of the nanostructure. Among tuning approaches, micro-electro-mechanical systems (MEMS) is a well-known technology that mechanically reconfigures the metamaterial unit cells. In this study, the development of MEMS-based metamaterial is reviewed and analyzed based on several types of actuators, including electrothermal, electrostatic, electromagnetic, and stretching actuation mechanisms. The moveable displacement and driving power are the key factors in evaluating the performance of actuators. Therefore, a comparison of actuating methods is offered as a basic guideline for selecting micro-actuators integrated with metamaterial. Additionally, by exploiting electro-mechanical inputs, MEMS-based metamaterials make possible the manipulation of incident electromagnetic waves, including amplitude, frequency, phase, and the polarization state, which enables many implementations of potential applications in optics. In particular, two typical applications of MEMS-based tunable metamaterials are reviewed, i.e., logic operation and sensing. These integrations of MEMS with metamaterial provide a novel route for the enhancement of conventional optical devices and exhibit great potentials in innovative applications, such as intelligent optical networks, invisibility cloaks, photonic signal processing, and so on.


Photonics ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 41
Author(s):  
Lu Han ◽  
Zhan Li ◽  
Chao Chen ◽  
Xin Sun ◽  
Junyong Zhang ◽  
...  

Vector beams (VBs) have spatially inhomogeneous polarization states distribution and have been widely used in many fields. In this paper, we proposed a method to modulate polarization states of higher-order Poincaré (HOP) beams and designed a system based on Mach-Zehnder interferometers, in which polarization state (include azimuth and ellipticity) of generated HOP beams were modulated by linear electro-optic (EO) effect of nonlinear optical crystals. Using this method, the polarization state of generated HOP beams could be controlled by voltage signal applied on EO crystals, which makes the process of the polarization state change with no optical element moving and mechanical vibrations. Besides, due to the flexibility of the voltage signal, the polarization state could be switched directly and immediately.


2022 ◽  
Author(s):  
Zehra (Bozkurt) Özdemir

Abstract In this paper, it is shown that the motion of a polarized light wave in an optical fiber has a special meaning that relates the scalar and vector part of the dual quaternion to the kinematics concept of a screw. We describe the circular and elliptical polarization of a light wave according to how the electric field vector varies in a projection onto a plane perpendicular to the propagation direction using the Clifford algebra of the dual quaternion. Also, we determine the circular-Rytov curve (CR ) and elliptical-Rytov curve (ER ), which described the paths traced out by the tip of the electric field vector as it propagates in space, related to the polarization state of the electric field ε. The elliptical and circular polarization states are expressed by using the four Stokes parameters and their matrix form. Furthermore, some motivating examples are given and visualized their images with the help of the MAPLE program.


2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Fuping Wu ◽  
Yuanfei Hui ◽  
Zhiwei Cui ◽  
Ju Wang

In this work, we analytically and numerically investigate the reflection characteristics of the airy beams impinging on graphene-substrate surfaces. The explicit analytical expressions for the electric and magnetic field components of the airy beams reflected from a graphene-substrate interface are derived. The local-field amplitude, Poynting vector, and spin and orbital angular momentum of the reflected airy beams with different graphene structure and beam parameters are presented and discussed. The results show that the reflection properties of the airy beams can be flexibly tuned by modulating the Fermi energy of the graphene and have a strong dependence on the incident angle and polarization state. These results may have potential applications in the modulation of airy beams and precise measurement of graphene structure parameters.


Author(s):  
A. A. AlKelly ◽  
Ibrahim G. H. Loqman ◽  
Hassan T. Al-Ahsab

Focus shaping of cylindrically polarized vortex beams (CPVBs) by linear axicon is studied theoretically. Vector diffraction theory has been used to derive the expressions of the light field in the focal region. It is shown that a different intensity distribution in the focal region can be obtained by adjusting the topological charge, the polarization rotation angle and the numerical aperture maximal angle. A focal spot, a dark channel and a flat-topped shapes are formed by choosing proper values of parameters. A controllable polarization state of dark channel is obtained. The different focal region shapes may find wide applications such as material processing and optical tweezers.


2021 ◽  
Vol 9 ◽  
Author(s):  
Qin Wei ◽  
Xile Han ◽  
Huanian Zhang ◽  
Chonghui Li ◽  
Chao Zhang ◽  
...  

The output power in ultrafast fiber lasers is usually limited due to the lack of a versatile saturable absorber with high damage threshold and large modulation depth. Here we proposed a more efficient strategy to improve the output energy of erbium-doped fiber laser based on indium selenide (In2Se3) prepared by using the physical vapor deposition (PVD) method. Finally, stable mode-locked bright pulses and triple-wavelength dark–bright pulse pair generation were obtained successfully by adjusting the polarization state. The average output power and pulse energy were 172.4 mW/101 nJ and 171.3 mW/100 nJ, which are significantly improved compared with the previous work. These data demonstrate that the PVD-In2Se3 can be a feasible nonlinear photonic material for high-power fiber lasers, which will pave a fresh avenue for the high-power fiber laser.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1584
Author(s):  
Jinzhao Li ◽  
Junyu Li ◽  
Shudao Zhou ◽  
Fei Yi

Photodetectors are the essential building blocks of a wide range of optical systems. Typical photodetectors only convert the intensity of light electrical output signals, leaving other electromagnetic parameters, such as the frequencies, phases, and polarization states unresolved. Metasurfaces are arrays of subwavelength structures that can manipulate the amplitude, phase, frequency, and polarization state of light. When combined with photodetectors, metasurfaces can enhance the light-matter interaction at the pixel level and also enable the detector pixels to resolve more electromagnetic parameters. In this paper, we review recent research efforts in merging metasurfaces with photodetectors towards improved detection performances and advanced detection schemes. The impacts of merging metasurfaces with photodetectors, on the architecture of optical systems, and potential applications are also discussed.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3436
Author(s):  
Shaobo Ge ◽  
Weiguo Liu ◽  
Xueping Sun ◽  
Jin Zhang ◽  
Pengfei Yang ◽  
...  

In this paper, comprehensively utilizing the diffraction theory and electromagnetic resonance effect is creatively employed to design a multifunctional metasurface zone plate (MMZP) and achieve the control of polarization states, while maintaining a broadband achromatic converging property in a near-IR region. The MMZP consists of several rings with fixed width and varying heights; each ring has a number of nanofins (usually called meta-atoms). The numerical simulation method is used to analyze the intensity distribution and polarization state of the emergent light, and the results show that the designed MMZP can realize the polarization manipulation while keeping the broadband in focus. For a specific design wavelength (0.7μm), the incident light can be converted from left circularly polarized light to right circularly polarized light after passing through the MMZP, and the focusing efficiency reaches above 35%, which is more than twice as much as reported in the literature. Moreover, the achromatic broadband focusing property of the MMZP is independent with the polarization state of the incident light. This approach broadens degrees of freedom in micro-nano optical design, and is expected to find applications in multifunctional focusing devices and polarization imaging.


Author(s):  
L. Rossi ◽  
J. Berzosa-Molina ◽  
J.-M. Desert ◽  
L. Fossati ◽  
A. García Muñoz ◽  
...  

AbstractThe polarization state of starlight reflected by a planetary atmosphere uniquely reveals coverage, particle size, and composition of aerosols as well as changing cloud patterns. It is not possible to obtain a comparable level of detail from flux-only observations. It is therefore a powerful tool to better understand the crucial role played by clouds and aerosols in the chemistry, dynamics, and radiative balance of a planet. Furthermore, polarization observations can probe the atmosphere of planets independently of the orbital geometry (hence it applies to both transiting and non-transiting exoplanets). A high-resolution spectropolarimeter with a broad wavelength coverage, particularly if attached to a large space telescope, would enable simultaneous study of the polarimetric planetary properties of the continuum and to look for and characterize the polarimetric signal due to scattering from single molecules, providing detailed information about the composition and vertical structure of the atmosphere.


2021 ◽  
Author(s):  
I. R. KHAIRULIN ◽  
V. А. АNTONOV ◽  
М. YU. RYABIKIN ◽  
M. A. BERRILL ◽  
V. N. SHLYAPTSEV ◽  
...  

Abstract Amplification of attosecond pulses produced via high harmonic generation is a formidable problem since none of the amplifiers can support the corresponding PHz bandwidth. Producing the well defined polarization state common for a set of harmonics required for formation of the circularly/elliptically polarized attosecond pulses (which are on demand for dynamical imaging and coherent control of the spin flip processes) is another big challenge. In this work we show how both problems can be tackled simultaneously on the basis of the same platform, namely, the plasma-based X-ray amplifier whose resonant transition frequency is modulated by an infrared field.


Sign in / Sign up

Export Citation Format

Share Document