Ground-based astronomical instrument for planetary protection

2014 ◽  
Author(s):  
Richard L. Kendrick ◽  
Dave Bennett ◽  
Matthew Bold
2017 ◽  
Vol 51 (4) ◽  
pp. 52-58
Author(s):  
E.A. Deshevaya ◽  
◽  
N.M. Khamidullina ◽  
A.A. Guridov ◽  
D.V. Zakharenko ◽  
...  
Keyword(s):  

2019 ◽  
Vol 95 (10) ◽  
Author(s):  
Jose V Lopez ◽  
Raquel S Peixoto ◽  
Alexandre S Rosado

ABSTRACT Based on modern microbiology, we propose a major revision in current space exploration philosophy and planetary protection policy, especially regarding microorganisms in space. Mainly, microbial introduction should not be considered accidental but inevitable. We hypothesize the near impossibility of exploring new planets without carrying and/or delivering any microbial travelers. In addition, although we highlight the importance of controlling and tracking such contaminations—to explore the existence of extraterrestrial microorganisms—we also believe that we must discuss the role of microbes as primary colonists and assets, rather than serendipitous accidents, for future plans of extraterrestrial colonization. This paradigm shift stems partly from the overwhelming evidence of microorganisms’ diverse roles in sustaining life on Earth, such as symbioses and ecosystem services (decomposition, atmosphere effects, nitrogen fixation, etc.). Therefore, we propose a framework for new discussion based on the scientific implications of future colonization and terraforming: (i) focus on methods to track and avoid accidental delivery of Earth's harmful microorganisms and genes to extraterrestrial areas; (ii) begin a rigorous program to develop and explore ‘Proactive Inoculation Protocols’. We outline a rationale and solicit feedback to drive a public and private research agenda that optimizes diverse organisms for potential space colonization.


2014 ◽  
Vol 53 (7) ◽  
pp. 1135-1142 ◽  
Author(s):  
Yoshinori Takano ◽  
Hajime Yano ◽  
Yasuhito Sekine ◽  
Ryu Funase ◽  
Ken Takai

2011 ◽  
Vol 10 (4) ◽  
pp. 335-340 ◽  
Author(s):  
J.R. Marshall ◽  
R.L. Mancinelli

AbstractLaboratory experiments were conducted to determine the effect of descent-engine plumes on the scouring of surface (microbial) contaminants from a spacecraft. A simulated touchdown of a half-scale lander engine and deck configuration was conducted at Mars atmospheric pressure in the NASA Ames Planetary Aeolian Laboratory. Low-density particles were used for the soil simulant to emulate the lower Martian gravity. The underside of the model had small witness plates with controlled microbial surface populations and particle impact detectors. For both steady-state engine thrust (Viking) and pulsed engine thrust (Phoenix), the exhaust plumes from the engines violently excavated the soil and produced particle-laden eddies beneath the lander that sandblasted the lander underside. The result was nearly complete erosion of microbial contaminants from the spacecraft model with their subsequent deposition in the surrounding area. It is concluded that different planetary protection cleanliness levels for different parts of a spacecraft do not necessarily prevent soil contamination because these cleaning strategies evolved without consideration of the effects of the descent engine plumes.


2006 ◽  
Vol 2 (SPS5) ◽  
pp. 21-24
Author(s):  
Rajesh Kochhar

AbstractAny international effort to promote astronomy world wide today must necessarily take into account its cultural and historical component. The past few decades have ushered in an age, which we may call the Age of Cultural Copernicanism. In analogy with the cosmological principle that the universe has no preferred location or direction, Cultural Copernicanism would imply that no cultural or geographical area, or ethnic or social group, can be deemed to constitute a superior entity or a benchmark for judging or evaluating others.In this framework, astronomy (as well as science in general) is perceived as a multi-stage civilizational cumulus where each stage builds on the knowledge gained in the previous stages and in turn leads to the next. This framework however is a recent development. The 19th century historiography consciously projected modern science as a characteristic product of the Western civilization decoupled from and superior to its antecedents, with the implication that all material and ideological benefits arising from modern science were reserved for the West.As a reaction to this, the orientalized East has often tended to view modern science as “their” science, distance itself from its intellectual aspects, and seek to defend, protect and reinvent “our” science and the alleged (anti-science) Eastern mode of thought. This defensive mind-set works against the propagation of modern astronomy in most of the non-Western countries. There is thus a need to construct a history of world astronomy that is truly universal and unselfconscious.Similarly, the planetarium programs, for use the world over, should be culturally sensitive. The IAU can help produce cultural-specific modules. Equipped with this paradigmatic background, we can now address the question of actual means to be adopted for the task at hand. Astronomical activity requires a certain minimum level of industrial activity support. Long-term maintenance of astronomical equipment is not a trivial task. There are any number of examples of an expensive facility falling victim to AIDS: Astronomical Instrument Deficiency Syndrome. The facilities planned in different parts of the world should be commensurate with the absorbing power of the acceptor rather than the level of the gifter.


2008 ◽  
Vol 63 (7-10) ◽  
pp. 1025-1030 ◽  
Author(s):  
Catharine A. Conley ◽  
John D. Rummel

Sign in / Sign up

Export Citation Format

Share Document