Detecting harmful algal blooms using Geostationary Ocean Color Imager (GOCI) data in Bohai Sea, China

2015 ◽  
Author(s):  
Mingzhu Xu ◽  
Zhiqiang Gao ◽  
Chaoshun Liu
Harmful Algae ◽  
2021 ◽  
Vol 106 ◽  
pp. 102066
Author(s):  
Hailong Huang ◽  
Qing Xu ◽  
Kate Gibson ◽  
Yang Chen ◽  
Nansheng Chen

2013 ◽  
Vol 59 ◽  
pp. 10-17 ◽  
Author(s):  
Zaixing Wu ◽  
Zhiming Yu ◽  
Xiuxian Song ◽  
Yongquan Yuan ◽  
Xihua Cao ◽  
...  

Elem Sci Anth ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Mati Kahru ◽  
Clarissa Anderson ◽  
Andrew D. Barton ◽  
Melissa L. Carter ◽  
Dylan Catlett ◽  
...  

As harmful algae blooms are increasing in frequency and magnitude, one goal of a new generation of higher spectral resolution satellite missions is to improve the potential of satellite optical data to monitor these events. A satellite-based algorithm proposed over two decades ago was used for the first time to monitor the extent and temporal evolution of a massive bloom of the dinoflagellate Lingulodinium polyedra off Southern California during April and May 2020. The algorithm uses ultraviolet (UV) data that have only recently become available from the single ocean color sensor on the Japanese GCOM-C satellite. Dinoflagellates contain high concentrations of mycosporine-like amino acids and release colored dissolved organic matter, both of which absorb strongly in the UV part of the spectrum. Ratios <1 of remote sensing reflectance of the UV band at 380 nm to that of the blue band at 443 nm were used as an indicator of the dinoflagellate bloom. The satellite data indicated that an observed, long, and narrow nearshore band of elevated chlorophyll-a (Chl-a) concentrations, extending from northern Baja to Santa Monica Bay, was dominated by L. polyedra. In other high Chl-a regions, the ratios were >1, consistent with historical observations showing a sharp transition from dinoflagellate- to diatom-dominated waters in these areas. UV bands are thus potentially useful in the remote sensing of phytoplankton blooms but are currently available only from a single ocean color sensor. As several new satellites such as the NASA Plankton, Aerosol, Cloud, and marine Ecosystem mission will include UV bands, new algorithms using these bands are needed to enable better monitoring of blooms, especially potentially harmful algal blooms, across large spatiotemporal scales.


2006 ◽  
Vol 37 (4) ◽  
pp. 681-689 ◽  
Author(s):  
DanLing Tang ◽  
Hiroshi Kawamura ◽  
Im Sang Oh ◽  
Joe Baker

Sign in / Sign up

Export Citation Format

Share Document