Comparative study of the use of the matrix approach and the flow-graph approach for optical analysis of isotropic stratified planar structures

Author(s):  
Dorian Minkov ◽  
Ryno Swanepoel
1999 ◽  
Vol 39 (7) ◽  
pp. 243-250 ◽  
Author(s):  
Joana Azeredo ◽  
Valentina Lazarova ◽  
Rosário Oliveira

To study the composition of a biofilm a previous extraction method is required to separate cells from the matrix. There are several methods reported in the literature; however they are not efficient or promote leakage of intracellular material. In this work several extraction methods were assayed in mixed culture and pure culture biofilms and their efficiency was evaluated by the amount of organic carbon, proteins and intracellular material extracted. The results showed that the extraction with glutaraldehyde 3% (w/v) was the most suitable method, extracting great amounts of organic carbon without promoting cell lysis or permeabilization. Glutaraldehyde is a bifunctional reagent that binds to cell walls avoiding their permeabilization and the biofilm matrix is solubilized in the solution.


Author(s):  
Nizar Tahri

In this paper, we propose a novel generalized S-matrix characterization approach. The goal is to keep track of all observed discontinuities as efficiently as possible. In terms of reflection value, the proposed control strategy is based on transmission coefficients and one-axis rectangular guides. We successfully manipulate metal rectangular waveguide filters with both geometrical and physical discontinuity. Lossless discontinuity is depicted as a periodic structure that contains Metamaterials. The modal development of transverse fields provides the basis for the generalized S-matrix approach. The approach works by breaking down electromagnetic fields for each of the guides that make up the discontinuity on an orthonormal basis. When the Galerkin method is used, the matrix of diffraction of the junction is obtained directly.


2020 ◽  
Vol 498 (3) ◽  
pp. 3368-3373
Author(s):  
E V Polyachenko ◽  
I G Shukhman

ABSTRACT Using the canonical Hamilton–Jacobi approach we study the Lynden-Bell concept of bar formation based on the idea of orbital trapping parallel to the long or short axes of the oval potential distortion. The concept considered a single parameter – a sign of the derivative of the precession rate over angular momentum, determining the orientation of the trapped orbits. We derived a perturbation Hamiltonian that includes two more parameters characterizing the background disc and the perturbation, which are just as important as the earlier known one. This allows us to link the concept with the matrix approach in linear perturbation theory, the theory of weak bars, and explain some features of the non-linear secular evolution observed in N-body simulations.


1973 ◽  
Vol 95 (3) ◽  
pp. 744-750 ◽  
Author(s):  
S. Hamid ◽  
A. H. Soni

Using the matrix approach, synthesis equations are derived for eight types of synthesis problems for an eight-link mechanism having five links in each of its three loops. A numerical approach due to Marquardt is applied to illustrate the synthesis technique for the varieties of motion programs.


Sign in / Sign up

Export Citation Format

Share Document