Multicore photonic crystal fibers for high-power laser application

Author(s):  
Dewang Yang ◽  
Yue-e Chen ◽  
Bingtao Zhang ◽  
Yong Wang
2006 ◽  
Author(s):  
Laurent Michaille ◽  
Charlotte R. Bennett ◽  
David M. Taylor ◽  
Terence J. Shepherd

2018 ◽  
Vol 26 (9) ◽  
pp. 11265 ◽  
Author(s):  
Jean-Christophe Delagnes ◽  
Romain Royon ◽  
Jérôme Lhermite ◽  
Giorgio Santarelli ◽  
Hector Muñoz ◽  
...  

Author(s):  
Damien Sangla ◽  
Nicolas Aubry ◽  
Julien Didierjean ◽  
Didier Perrodin ◽  
François Balembois ◽  
...  

2012 ◽  
Author(s):  
Sameeh I. Batarseh ◽  
Hazim H. Abass ◽  
Abdulrahman A. Al-Mulhem ◽  
Nabeel S. Habib

2017 ◽  
Vol 478 ◽  
pp. 28-32 ◽  
Author(s):  
Yanru Yin ◽  
Hanlin Tian ◽  
Jian Zhang ◽  
Wenxiang Mu ◽  
Baitao Zhang ◽  
...  

2017 ◽  
Vol 63 ◽  
pp. 213-220 ◽  
Author(s):  
Lili Hu ◽  
Dongbing He ◽  
Huiyu Chen ◽  
Xin Wang ◽  
Tao Meng ◽  
...  

Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 121
Author(s):  
Jun Li ◽  
Hao Li ◽  
Zefeng Wang

A 1.7 μm pulsed laser plays an important role in bioimaging, gas detection, and so on. Fiber gas Raman lasers (FGRLs) based on hollow-core photonic crystal fibers (HC-PCFs) provide a novel and effective method for fiber lasers operating at 1.7 μm. Compared with traditional methods, FGRLs have more advantages in generating high-power 1.7 μm pulsed lasers. This paper reviews the studies of 1.7 μm FGRLs, briefly describes the principle and characteristics of HC-PCFs and gas-stimulated Raman scattering (SRS), and systematical characterizes 1.7 μm FGRLs in aspects of output spectral coverage, power-limiting factors, and a theoretical model. When the fiber length and pump power are constant, a relatively high gas pressure and appropriate pump peak power are the key to achieving high-power 1.7 μm Raman output. Furthermore, the development direction of 1.7 μm FGRLs is also explored.


Sign in / Sign up

Export Citation Format

Share Document