Software module for determination of spectral transmission coefficients of horizontal path of atmospheric boundary layer

Author(s):  
Stanislav Arbuzov ◽  
Evgenij Gritskevich ◽  
Polina Zviagintseva
Atmosphere ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 711 ◽  
Author(s):  
Odintsov ◽  
Gladkikh ◽  
Kamardin ◽  
Nevzorova

The structural characteristic of the refractive index of optical waves was calculated from experimental data on the microstructure of the temperature turbulence in the atmospheric boundary layer. The experimental data were obtained with an acoustic meteorological radar (sodar), ultrasonic anemometer–thermometer, and meteorological temperature profilometer. Estimates of the structural characteristics for different conditions in the atmospheric boundary layer are presented and were compared with model profiles.


2006 ◽  
Vol 49 (3) ◽  
pp. 556-566
Author(s):  
Lionel ELLIOTT ◽  
Derek Binns INGHAM ◽  
Stephen David WRIGHT

2011 ◽  
Vol 4 (2) ◽  
pp. 143-149 ◽  
Author(s):  
C. A. Keller ◽  
H. Huwald ◽  
M. K. Vollmer ◽  
A. Wenger ◽  
M. Hill ◽  
...  

Abstract. A new method for measuring air temperature profiles in the atmospheric boundary layer at high spatial and temporal resolution is presented. The measurements are based on Raman scattering distributed temperature sensing (DTS) with a fiber optic cable attached to a tethered balloon. These data were used to estimate the height of the stable nocturnal boundary layer. The experiment was successfully deployed during a two-day campaign in September 2009, providing evidence that DTS is well suited for this atmospheric application. Observed stable temperature profiles exhibit an exponential shape confirming similarity concepts of the temperature inversion close to the surface. The atmospheric mixing height (MH) was estimated to vary between 5 m and 50 m as a result of the nocturnal boundary layer evolution. This value is in good agreement with the MH derived from concurrent Radon-222 (222Rn) measurements and in previous studies.


1996 ◽  
Author(s):  
Christian Werner ◽  
Friedrich Koepp ◽  
Rolf Heilmann ◽  
Stephan Rahm ◽  
Juergen Streicher

2010 ◽  
Vol 3 (3) ◽  
pp. 2723-2741 ◽  
Author(s):  
C. A. Keller ◽  
H. Huwald ◽  
M. K. Vollmer ◽  
A. Wenger ◽  
M. Hill ◽  
...  

Abstract. A new method for measuring air temperature profiles in the atmospheric boundary layer at high spatial and temporal resolution is presented. The measurements are based on Raman scattering distributed temperature sensing (DTS) with a fiber optic cable attached to a tethered balloon. These data were used to estimate the height of the stable nocturnal boundary layer. The experiment was successfully deployed during a two-day campaign in September 2009, providing evidence that DTS is well suited for this atmospheric application. Observed stable temperature profiles exhibit an exponential shape confirming similarity concepts of the temperature inversion close to the surface. The atmospheric mixing height (MH) was estimated to vary between 5 m and 50 m as a result of the nocturnal boundary layer evolution. This value is in good agreement to the MH derived from concurrent Radon-222 (222Rn) measurements and in previous studies.


Sign in / Sign up

Export Citation Format

Share Document