Doppler lidar experiences for the determination of the wind profile in the atmospheric boundary layer

1996 ◽  
Author(s):  
Christian Werner ◽  
Friedrich Koepp ◽  
Rolf Heilmann ◽  
Stephan Rahm ◽  
Juergen Streicher
2018 ◽  
Vol 176 ◽  
pp. 02012
Author(s):  
Songhua Wu ◽  
Qichao Wang ◽  
Bingyi Liu ◽  
Jintao Liu ◽  
Kailin Zhang ◽  
...  

A compact UAV-borne Coherent Doppler Lidar (UCDL) has been developed at the Ocean University of China for the observation of wind profile and boundary layer structure in Marine Atmospheric Boundary Layer (MABL). The design, specifications and motion-correction methodology of the UCDL are presented. Preliminary results of the first flight campaign in Hailing Island in December 2016 is discussed.


2021 ◽  
Author(s):  
Ginaldi Ari Nugroho ◽  
Kosei Yamaguchi ◽  
Eiichi Nakakita ◽  
Masayuki K. Yamamoto ◽  
Seiji Kawamura ◽  
...  

<p>Detailed observation of small scale perturbation in the atmospheric boundary layer during the first generated cumulus cloud are conducted. Our target is to study this small scale perturbation, especially related to the thermal activity at the first generated cumulus cloud. The observation is performed during the daytime on August 17, 2018, and September 03, 2018. Location is focused in the urban area of Kobe, Japan. High-resolution instruments such as Boundary Layer Radar, Doppler Lidar, and Time Lapse camera are used in this observation. Boundary Layer Radar, and Doppler Lidar are used for clear air observation. Meanwhile Time Lapse Camera are used for cloud existence observation. The atmospheric boundary layer structure is analyzed based on vertical velocity profile, variance, skewness, and estimated atmospheric boundary layer height. Wavelet are used to observe more of the period of the thermal activity. Furthermore, time correlation between vertical velocity time series from height 0.3 to 2 km and image pixel of generated cloud time series are also discussed in this study.</p>


Author(s):  
Ryoko ODA ◽  
Hironori IWAI ◽  
Shoken ISHII ◽  
Shinya SEKIZAWA ◽  
Kohei MIZUTANI ◽  
...  

2021 ◽  
Author(s):  
Francisco Albuquerque Neto ◽  
Vinicius Almeida ◽  
Julia Carelli

<p>In recent years, the use of radar wind profilers (RWP) at airports has grown significantly with the aim of supporting decision makers to maintain the safety of aircraft landings and takeoffs.</p><p>The RWP provide vertical profiles of averaged horizontal wind speed and direction and vertical wind velocity for the entire Atmospheric Boundary Layer (ABL) and beyond. In addition, RWP with Radio-Acoustic Sounding System (RASS) are able to retrieve virtual temperature profiles in the ABL.</p><p>RWP data evaluation is usually based on the so-called Doppler Beam Swinging method (DBS) which assumes homogeneity and stationarity of the wind field. Often, transient eddies violate this homogeneity and stationarity requirement. Hence, incorrect wind profiles can relate to transient eddies and present a problem for the forecast of high-impact weather phenomena in airports. This work intends to provide a method for removing outliers in such profiles based on historical data and other variables related to the Atmospheric Boundary Layer stability profile in the study region.</p><p>For this study, a dataset of almost one year retrieved from a RWP LAP3000 with RASS Extension is used for a wind profile correction algorithm development.</p><p>The algorithm consists of the detection of outliers in the wind profiles based on the thermodynamic structure of the ABL and the generation of the corrected profiles.</p><p>Results show that the algorithm is capable of identifying and correcting unrealistic variations in speed caused by transient eddies. The method can be applied as a complement to the RWP data processing for better data reliability.</p><p> </p><p>Keywords: atmospheric boundary layer; stability profile; wind profile</p>


2004 ◽  
Vol 110 (2) ◽  
pp. 281-299 ◽  
Author(s):  
John D. Wilson ◽  
Thomas K. Flesch

2019 ◽  
Vol 145 (720) ◽  
pp. 982-992 ◽  
Author(s):  
Mark Kelly ◽  
Roberto Alessio Cersosimo ◽  
Jacob Berg

Atmosphere ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 711 ◽  
Author(s):  
Odintsov ◽  
Gladkikh ◽  
Kamardin ◽  
Nevzorova

The structural characteristic of the refractive index of optical waves was calculated from experimental data on the microstructure of the temperature turbulence in the atmospheric boundary layer. The experimental data were obtained with an acoustic meteorological radar (sodar), ultrasonic anemometer–thermometer, and meteorological temperature profilometer. Estimates of the structural characteristics for different conditions in the atmospheric boundary layer are presented and were compared with model profiles.


Sign in / Sign up

Export Citation Format

Share Document