Methods of microwave radiometric studies of mesospheric clouds

Author(s):  
Georgy S. Bordonskiy ◽  
Alexander A. Gurulev ◽  
Aleksey O. Orlov ◽  
Sergei V. Tsyrenzhapov
Keyword(s):  
2001 ◽  
Vol 27 (10) ◽  
pp. 1703-1708 ◽  
Author(s):  
J.F. Carbary ◽  
D. Morrison ◽  
G.J. Romick ◽  
L.J. Paxton ◽  
C.-I. Meng

2018 ◽  
Author(s):  
Uwe Berger ◽  
Gerd Baumgarten ◽  
Jens Fiedler ◽  
Franz-Josef Lübken

Abstract. In this paper we present a new description about statistical probability density distributions (pdfs) of Polar Mesospheric Clouds (PMC) and noctilucent clouds (NLC). The analysis is based on observations of maximum backscatter, ice mass density, ice particle radius, and number density of ice particles measured by the ALOMAR RMR-lidar for all NLC seasons from 2002 to 2016. From this data set we derive a new class of pdfs that describe the statistics of PMC/NLC events which is different from previously statistical methods using the approach of an exponential distribution commonly named g-distribution. The new analysis describes successfully the probability statistic of ALOMAR lidar data. It turns out that the former g-function description is a special case of our new approach. In general the new statistical function can be applied to many kinds of different PMC parameters, e.g. maximum backscatter, integrated backscatter, ice mass density, ice water content, ice particle radius, ice particle number density or albedo measured by satellites. As a main advantage the new method allows to connect different observational PMC distributions of lidar, and satellite data, and also to compare with distributions from ice model studies. In particular, the statistical distributions of different ice parameters can be compared with each other on the basis of a common assessment that facilitate, for example, trend analysis of PMC/NLC.


1986 ◽  
Vol 43 (12) ◽  
pp. 1263-1274 ◽  
Author(s):  
John J. Olivero ◽  
Gary E. Thomas

2021 ◽  
Author(s):  
Christophe Mathé ◽  
Anni Määttänen ◽  
Joachim Audouard ◽  
Constantino Listowski ◽  
Ehouarn Millour ◽  
...  

<p>In the Martian atmosphere, carbon dioxide (CO<sub>2</sub>) clouds have been revealed by numerous instruments around Mars from the beginning of the XXI century. These observed clouds can be distinguished by two kinds involving different formation processes: those formed during the winter in polar regions located in the troposphere, and those formed during the Martian year at low- and mid-northern latitudes located in the mesosphere (Määattänen et al, 2013). Microphysical processes of the formation of these clouds are still not fully understood. However, modeling studies revealed processes necessary for their formation: the requirement of waves that perturb the atmosphere leading to a temperature below the condensation of CO<sub>2</sub> (transient planetary waves for tropospheric clouds (Kuroda et al., 20123), thermal tides (Gonzalez-Galindo et al., 2011) and gravity waves for mesospheric clouds (Spiga et al., 2012)). In the last decade, a state-of-the-art microphysical column (1D) model for CO<sub>2</sub> clouds in a Martian atmosphere was developed at Laboratoire Atmosphères, Observations Spatiales (LATMOS) (Listowski et al., 2013, 2014). We use our full microphysical model of CO<sub>2</sub> cloud formation to investigate the occurrence of these CO<sub>2</sub> clouds by coupling it with the Global Climate Model (GCM) of the Laboratoire de Météorologie Dynamique (LMD) (Forget et al., 1999). We recently activated the radiative impact of CO<sub>2</sub> clouds in the atmosphere. Last modeling results on Martian CO<sub>2</sub> clouds properties and their impacts on the atmosphere will be presented and be compared to observational data.</p>


2012 ◽  
Vol 117 (D19) ◽  
pp. n/a-n/a ◽  
Author(s):  
Michael H. Stevens ◽  
Stefan Lossow ◽  
Jens Fiedler ◽  
Gerd Baumgarten ◽  
Franz-Josef Lübken ◽  
...  

Author(s):  
A. Määttänen ◽  
K. Pérot ◽  
F. Montmessin ◽  
A. Hauchecorne
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document