probability method
Recently Published Documents


TOTAL DOCUMENTS

503
(FIVE YEARS 142)

H-INDEX

23
(FIVE YEARS 4)

Entropy ◽  
2022 ◽  
Vol 24 (1) ◽  
pp. 122
Author(s):  
Svitlana Matsenko ◽  
Oleksiy Borysenko ◽  
Sandis Spolitis ◽  
Aleksejs Udalcovs ◽  
Lilita Gegere ◽  
...  

Forward error correction (FEC) codes combined with high-order modulator formats, i.e., coded modulation (CM), are essential in optical communication networks to achieve highly efficient and reliable communication. The task of providing additional error control in the design of CM systems with high-performance requirements remains urgent. As an additional control of CM systems, we propose to use indivisible error detection codes based on a positional number system. In this work, we evaluated the indivisible code using the average probability method (APM) for the binary symmetric channel (BSC), which has the simplicity, versatility and reliability of the estimate, which is close to reality. The APM allows for evaluation and compares indivisible codes according to parameters of correct transmission, and detectable and undetectable errors. Indivisible codes allow for the end-to-end (E2E) control of the transmission and processing of information in digital systems and design devices with a regular structure and high speed. This study researched a fractal decoder device for additional error control, implemented in field-programmable gate array (FPGA) software with FEC for short-reach optical interconnects with multilevel pulse amplitude (PAM-M) modulated with Gray code mapping. Indivisible codes with natural redundancy require far fewer hardware costs to develop and implement encoding and decoding devices with a sufficiently high error detection efficiency. We achieved a reduction in hardware costs for a fractal decoder by using the fractal property of the indivisible code from 10% to 30% for different n while receiving the reciprocal of the golden ratio.


2021 ◽  
Author(s):  
Tongtong Jin ◽  
Chuliang Yan ◽  
Jinyan Guo ◽  
Chuanhai Chen ◽  
Dong Zhu

Abstract In order to overcome the problem that the existing methods of compiling load spectrum of spindle or machine tool mainly aim at the cutting force spectrum, torque spectrum and speed spectrum respectively, which ignore the connection between each spectrum, in this paper, a method for compiling drilling load spectrum of motorized spindle in CNC machine tool based on the characteristics of drilling force is proposed. Firstly, drilling tests under different processing technologies are carried out to measure its load, and the correction coefficient in the empirical formula of drilling force is obtained through fitting the measured drilling force, which makes the calculation of the axial force and torque more reasonable. Secondly, compared with the extended factor method, the transcendental probability method is optimized to solve the ultimate load of the axial force. Then, after setting the axial force as the main load of drilling, an eight-stage load spectrum for the main load is compiled. Finally, according to the relationship between the axial force and other loads, the eight-stage loading spectrum is transformed into a multi-dimensional drilling load spectrum.


Author(s):  
Xiaohong Li ◽  
Qin Sun ◽  
Hongna Dui

Fatigue damage of a whole structure with multiple similar fatigue hazardous detail parts is unclear. This paper focuses on the concept of quantified fatigue damage for the structure with similar fatigue hazardous detail parts by using the probability method and fatigue failure probability of the severe load spectrum. The probability criterion and calculation method of equivalent damage with different load spectra were proposed. The fatigue life probability distribution of the severe load spectrum was analyzed, and the acceleration ratio was defined by the similar details number of fatigue cracking in combination with the fatigue failure probability characteristics of the severe load spectrum. The results show that there is good agreement between the similar details number range of fatigue cracking in two load spectra, which means they are considered to be equivalent. The ratio of the sum of two similar details number ranges is used as acceleration ratio to evaluate the severe load spectrum. The application of this study in the statistical sense of engineering structure fatigue failure is more convincing.


2021 ◽  
Author(s):  
Peng Bao ◽  
Xiaoli Cui ◽  
Haoliang Shen ◽  
Yiping Wang ◽  
Yang Lu

Abstract Background: Acute pancreatitis (AP) is a common serious illness, and is characterized by rapid deterioration and a high mortality rate. Several biomarkers can evaluate and guide the treatment of acute pancreatitis, but there is currently no consensus on which markers are the most effective, simple, and economical for treating early-onset AP. In this study, we used the MIMIC III database to conduct a retrospective study on the relationship between early lactate/albumin (LAC/ALB), in-hospital mortality, and complication rates in patients with acute pancreatitis in the ICU.Methods: Basic data and indicators of laboratory tests, hospital deaths, and hospitalization days of acute pancreatitis patients were extracted from the database, after which the relationship between LAC/ALB and hospital mortality, ICU hospitalization days, and organ failure were evaluated using a t-test, a rank-sum test, a chi-square test or Fisher's exact probability method, and a Cox proportional hazard model.Results: 894 patients met the requirements and were selected from the MIMIC III database. They were subsequently grouped according to the lower limit ratio of the LAC/ALB normal value of 0.7. The group with LAC/ALB>0.7 showed higher hospital mortality rates, and the Lac, Inr, nitrogen, blood sugar, AKI incidence, Tbil, Sapsii score, and Sofa scores were all higher than the group with LAC/ALB<0.7. A multivariate Cox regression analysis model was used to explore the relationship between LAC/ALB levels and inpatient mortality. After including different adjustment variables, we determined that LAC/ALB is a risk factor for in-hospital death. The results of the subgroup analysis of LAC/ALB levels and mortality of hospitalized patients indicate that higher levels of LAC/ALB are risk factors for in-hospital deaths in patients with acute pancreatitis.


2021 ◽  
Vol 9 ◽  
Author(s):  
Wonkyeong Kim ◽  
Sooyoung Choi ◽  
Deokjung Lee

The pin-based pointwise energy slowing-down method (PSM) has been refined through eliminating the approximation for using the pre-tabulated collision probability during the slowing-down calculation. A collision probability table is generated by assuming that material composition and temperature are constant in the fuel pellet using the collision probability method (CPM). Refined PSM (PSM-CPM), which calculates the collision probability in the isolated fuel pellet during the slowing-down calculation using CPM, can consider nonuniform material and temperature distribution. For the methods, the extensive comparative analysis is performed with problems representing various possible conditions in a light water reactor (LWR) design. Conditions are categorized with the geometry, material distribution, temperature profile in the fuel pellet, and burnup. With test problems, PSMs (PSM and PSM-CPM) have been compared with conventional methods based on the equivalence theory. With overall calculation results, PSMs show the accuracy in the eigenvalue with differences in the order of 100 pcm compared to the reference results. There was no noticeable difference in the multigroup cross sections, reaction rates, and pin power distributions. However, PSM-CPM maintains the accuracy in the calculation of the fuel temperature coefficient under the condition with 200% power and nonuniform temperature distribution in the fuel pellet. PSM shows the difference in the eigenvalue in the order of 2,000 pcm for the fictitious pin-cell problem with highly steep temperature profiles and material compositions, but PSM-CPM shows the difference in the eigenvalue within 100 pcm.


2021 ◽  
Vol 8 (2) ◽  
pp. 213-224
Author(s):  
Pei Lv ◽  
Hui Wei ◽  
Tianxin Gu ◽  
Yuzhen Zhang ◽  
Xiaoheng Jiang ◽  
...  

AbstractTrajectory prediction is a fundamental and challenging task for numerous applications, such as autonomous driving and intelligent robots. Current works typically treat pedestrian trajectories as a series of 2D point coordinates. However, in real scenarios, the trajectory often exhibits randomness, and has its own probability distribution. Inspired by this observation and other movement characteristics of pedestrians, we propose a simple and intuitive movement description called a trajectory distribution, which maps the coordinates of the pedestrian trajectory to a 2D Gaussian distribution in space. Based on this novel description, we develop a new trajectory prediction method, which we call the social probability method. The method combines trajectory distributions and powerful convolutional recurrent neural networks. Both the input and output of our method are trajectory distributions, which provide the recurrent neural network with sufficient spatial and random information about moving pedestrians. Furthermore, the social probability method extracts spatio-temporal features directly from the new movement description to generate robust and accurate predictions. Experiments on public benchmark datasets show the effectiveness of the proposed method.


MAUSAM ◽  
2021 ◽  
Vol 48 (4) ◽  
pp. 587-594
Author(s):  
WANG XIUQIN ◽  
WANG JINGYONG

In the present paper the maximum storm surge elevations with certain return years were calculated by using a joint probability method. Based on the analyses of the typhoons which, affected coastal zone of Guangdong Province in history, a group of model typhoons was established. A number of parameters, which described the typhoons, were selected. The data of each parameter I was graded into a few sub-groups according to their values, and this was done in accordance with the historical observations. The probability of each value of the parameters was calculated based on the historical records. The probability of a typhoon with a group of values of parameters could be calculated. Simulation results of the storm surges caused by the above model typhoons with their probabilities were analysed statistically. Thus an accumulated probability curve and maximum elevations with certain return years were obtained. A number of spots was selected. At some of the spots there are tidal stations and at the others there are none. The maximum elevations with certain return years at the spots were calculated and the results were found satisfactory. By using this method all the meteorological and hydrological data, which were available, can be fully utilized. This method is most suitable for calculating the  maximum elevations at a place where there is no tidal station or at many places simultaneously.    


2021 ◽  
Vol 2083 (3) ◽  
pp. 032032
Author(s):  
Junyi Li ◽  
Minghao Liu ◽  
Tianlin Liu ◽  
Lei Jing

Abstract “Neighborhood” as the principle of “the closer the distance, the more relevant the attributes”, is often used as a key driving factor for the urban dynamic modeling of cellular automata; however, the current implementation of the “neighborhood” idea is mostly adopted Mean probability method. This method affects the accuracy of urban dynamic simulation to a certain extent because it ignores the spatial heterogeneity of neighboring cells. Based on the random forest method to evaluate the suitability probability of land use, this study uses the intensity gradient change characteristics of the luminous data to endow the traditional neighborhood cell heterogeneity characteristics, and builds a random forest neighborhood heterogeneity CA model (Random forest Neighborhood Heterogeneity Cellular Automata, RF-NH-CA), and verified the effectiveness of the model by simulating the changes in urban land use in the 21 districts of Chongqing’s main city from 2010 to 2017 through a multi-scheme comparative experiment. The results showed that the overall simulation accuracy of the RF-NH-CA model reached 97.59%, and the Kappa coefficient reached 0.7434; compared with the traditional models RF-CA, ANN-CA and Logistic-CA, FoM increased by 0.0274,0.0383,0.0579, respectively. The Kappa coefficient increased by 0.0162,0.0229,0.0351 respectively. Studies have shown that giving the neighborhood cell heterogeneity through luminous data has played a role in improving the accuracy of land use simulation, which is more in line with the real urban expansion.


Sign in / Sign up

Export Citation Format

Share Document