scattering coefficient
Recently Published Documents


TOTAL DOCUMENTS

536
(FIVE YEARS 97)

H-INDEX

40
(FIVE YEARS 4)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Shuaibin Chang ◽  
Divya Varadarajan ◽  
Jiarui Yang ◽  
Ichun Anderson Chen ◽  
Sreekanth Kura ◽  
...  

AbstractOptical coherence tomography (OCT) is an emerging 3D imaging technique that allows quantification of intrinsic optical properties such as scattering coefficient and back-scattering coefficient, and has proved useful in distinguishing delicate microstructures in the human brain. The origins of scattering in brain tissues are contributed by the myelin content, neuron size and density primarily; however, no quantitative relationships between them have been reported, which hampers the use of OCT in fundamental studies of architectonic areas in the human brain and the pathological evaluations of diseases. Here, we built a generalized linear model based on Mie scattering theory that quantitatively links tissue scattering to myelin content and neuron density in the human brain. We report a strong linear relationship between scattering coefficient and the myelin content that is retained across different regions of the brain. Neuronal cell body turns out to be a secondary contribution to the overall scattering. The optical property of OCT provides a label-free solution for quantifying volumetric myelin content and neuron cells in the human brain.


2021 ◽  
Author(s):  
Marilena Teri ◽  
Thomas Müller ◽  
Josef Gasteiger ◽  
Sara Valentini ◽  
Helmuth Horvath ◽  
...  

Abstract. Aerosol particles in the atmosphere interact with solar radiation through scattering and absorption. Accurate aerosol optical properties are needed to reduce the uncertainties of climate predictions. The aerosol optical properties can be obtained via optical modeling based on the measured particle size distribution. This approach requires knowledge or assumptions on the particle refractive index and shape. Meanwhile, integrating nephelometry provides information on the aerosol scattering properties directly. However, their measurements are affected by angular non-idealities, and their data need to be corrected for angular truncation and illumination to provide the particle scattering coefficient. We performed an extensive closure study, including a laboratory and a simulated experiment, aiming to compare different nephelometer angular truncation and illumination corrections (further referred to as "angular corrections"). We focused on coarse mode irregularly shaped aerosols, such as mineral dust, a worldwide abundant aerosol component. The angular correction of irregular particles is found to be only ~2 % higher than the angular correction of volume equivalent spheres. If the angular correction is calculated with Mie theory, the particle size distribution is needed. Our calculations show that if the particle size distribution is retrieved from optical particle spectrometer measurements and the irregular shape effect is not considered, the angular correction can be overestimated by about 5 % and up to 22 %. For mineral dust, the traditional angular correction based on the wavelength dependency of the scattering coefficient seems more accurate. We propose a guideline to establish the most appropriate angular correction depending on the aerosol type and the investigated size range.


2021 ◽  
Vol 13 (24) ◽  
pp. 5178
Author(s):  
Yuxin Deng ◽  
Min Zhang ◽  
Wangqiang Jiang ◽  
Letian Wang

The electromagnetic scattering study of the turbulent wake of a moving ship has important application value in target recognition and tracking. However, to date, there has been insufficient research into the electromagnetic characteristics of near-field propeller turbulence. This study presents a new procedure for evaluating the electromagnetic scattering coefficient and imaging characteristics of turbulent wakes in the near field. By controlling the different values of the net momenta, a turbulent wake was generated using the large-eddy simulation method. The results show that the net momentum transferred to the background flow field determines the development of the turbulent wake, which explains the formation mechanism of the turbulence. Combined with the turbulent energy attenuation spectrum, the electromagnetic scattering characteristics of the turbulent wake were calculated using the two-scale facet mode. Using this method, the impact of different parameters on the scattering coefficient and the electromagnetic image of the turbulence wake were investigated, to explain the modulation mechanism and electromagnetic imaging characteristics of the near-field turbulent wake. Moreover, an application for estimating a ship’s heading is proposed based on the electromagnetic imaging characteristics of the turbulent wake.


2021 ◽  
Author(s):  
Dmitriy G. Chernov ◽  
Valery S. Kozlov ◽  
Mikhail V. Panchenko ◽  
Svetlana A. Terpugova ◽  
Vladimir P. Shmargunov

2021 ◽  
Vol 27 (11) ◽  
pp. 890-896
Author(s):  
Won Young Chung ◽  
Sun Young Kim ◽  
Chan Gook Park ◽  
Chang Ho Kang

2021 ◽  
Author(s):  
Minnan Jiang ◽  
Zhe Li ◽  
Kebin Jia ◽  
Jie De ◽  
Jinchao Feng ◽  
...  

2021 ◽  
Vol 2099 (1) ◽  
pp. 012042
Author(s):  
E O Kovalenko ◽  
I V Prokhorov

Abstract In this paper the problems of constructing sonar images of the seabed according to measurements of the multibeam side scan sonar are considered. The inverse problem for the non-stationary equation of radiation transfer with the diffuse reflection conditions at the boundary which consists in finding the discontinuity lines of the bottom scattering coefficient is investigated. A numerical algorithm for solving the inverse problem is developed, and an analysis of the quality of reconstructing the boundaries of inhomogeneities of the seabed is carried out, depending on the number of views and the width of a radiation pattern and the sounding range.


2021 ◽  
Vol 922 (1) ◽  
pp. 11
Author(s):  
Lucia Armillotta ◽  
Eve C. Ostriker ◽  
Yan-Fei Jiang

Abstract Cosmic-ray transport on galactic scales depends on the detailed properties of the magnetized, multiphase interstellar medium (ISM). In this work, we postprocess a high-resolution TIGRESS magnetohydrodynamic simulation modeling a local galactic disk patch with a two-moment fluid algorithm for cosmic-ray transport. We consider a variety of prescriptions for the cosmic rays, from a simple, purely diffusive formalism with constant scattering coefficient, to a physically motivated model in which the scattering coefficient is set by the critical balance between streaming-driven Alfvén wave excitation and damping mediated by local gas properties. We separately focus on cosmic rays with kinetic energies of ∼1 GeV (high-energy) and ∼30 MeV (low energy), respectively important for ISM dynamics and chemistry. We find that simultaneously accounting for advection, streaming, and diffusion of cosmic rays is crucial for properly modeling their transport. Advection dominates in the high-velocity, low-density hot phase, while diffusion and streaming are more important in higher-density, cooler phases. Our physically motivated model shows that there is no single diffusivity for cosmic-ray transport: the scattering coefficient varies by four or more orders of magnitude, maximal at density n H ∼ 0.01 cm−3. The ion-neutral damping of Alfvén waves results in strong diffusion and nearly uniform cosmic-ray pressure within most of the mass of the ISM. However, cosmic rays are trapped near the disk midplane by the higher scattering rate in the surrounding lower-density, higher-ionization gas. The transport of high-energy cosmic rays differs from that of low-energy cosmic rays, with less effective diffusion and greater energy losses for the latter.


Sign in / Sign up

Export Citation Format

Share Document