scholarly journals Global 3D modelling of Martian CO2 clouds

Author(s):  
Christophe Mathé ◽  
Anni Määttänen ◽  
Joachim Audouard ◽  
Constantino Listowski ◽  
Ehouarn Millour ◽  
...  

<p>In the Martian atmosphere, carbon dioxide (CO<sub>2</sub>) clouds have been revealed by numerous instruments around Mars from the beginning of the XXI century. These observed clouds can be distinguished by two kinds involving different formation processes: those formed during the winter in polar regions located in the troposphere, and those formed during the Martian year at low- and mid-northern latitudes located in the mesosphere (Määattänen et al, 2013). Microphysical processes of the formation of these clouds are still not fully understood. However, modeling studies revealed processes necessary for their formation: the requirement of waves that perturb the atmosphere leading to a temperature below the condensation of CO<sub>2</sub> (transient planetary waves for tropospheric clouds (Kuroda et al., 20123), thermal tides (Gonzalez-Galindo et al., 2011) and gravity waves for mesospheric clouds (Spiga et al., 2012)). In the last decade, a state-of-the-art microphysical column (1D) model for CO<sub>2</sub> clouds in a Martian atmosphere was developed at Laboratoire Atmosphères, Observations Spatiales (LATMOS) (Listowski et al., 2013, 2014). We use our full microphysical model of CO<sub>2</sub> cloud formation to investigate the occurrence of these CO<sub>2</sub> clouds by coupling it with the Global Climate Model (GCM) of the Laboratoire de Météorologie Dynamique (LMD) (Forget et al., 1999). We recently activated the radiative impact of CO<sub>2</sub> clouds in the atmosphere. Last modeling results on Martian CO<sub>2</sub> clouds properties and their impacts on the atmosphere will be presented and be compared to observational data.</p>

2021 ◽  
Author(s):  
Christophe Mathé ◽  
Anni Määttänen ◽  
Joachim Audouard ◽  
Constantino Listowski ◽  
Ehouarn Millour ◽  
...  

<p>In the Martian atmosphere, carbon dioxide (CO<sub>2</sub>) clouds have been revealed by numerous instruments around Mars from the beginning of the XXI century. These observed clouds can be distinguished by two kinds involving different formation processes: those formed during the winter in polar regions located in the troposphere, and those formed during the Martian year at low- and mid-northern latitudes located in the mesosphere (Määattänen et al, 2013). Microphysical processes of formation of theses clouds are still not fully understood. However, modeling studies revealed processes necessary for their formation: the requirement of waves that perturb the atmosphere leading to a temperature below the condensation of CO<sub>2</sub> (transient planetary waves for tropospheric clouds (Kuroda et al., 20123), thermal tides (Gonzalez-Galindo et al., 2011) and gravity waves for mesospheric clouds (Spiga et al., 2012)). In the last decade, a state-of-the-art microphysical column (1D) model for CO<sub>2</sub> clouds in a Martian atmosphere was developed at Laboratoire Atmosphères, Observations Spatiales (LATMOS) (Listowski et al., 2013, 2014). We use our full microphysical model of CO<sub>2</sub> clouds formation to investigate the occurrence of these CO<sub>2</sub> clouds by coupling it with the Global Climate Model (GCM) of the Laboratoire de Météorologie Dynamique (LMD) (Forget et al., 1999). Last modeling results on Martian CO<sub>2</sub> clouds properties and their impacts on the atmosphere will be presented and be compared to observational data.</p>


2010 ◽  
Vol 10 (12) ◽  
pp. 5449-5474 ◽  
Author(s):  
M. Wang ◽  
J. E. Penner

Abstract. A statistical cirrus cloud scheme that accounts for mesoscale temperature perturbations is implemented in a coupled aerosol and atmospheric circulation model to better represent both subgrid-scale supersaturation and cloud formation. This new scheme treats the effects of aerosol on cloud formation and ice freezing in an improved manner, and both homogeneous freezing and heterogeneous freezing are included. The scheme is able to better simulate the observed probability distribution of relative humidity compared to the scheme that was implemented in an older version of the model. Heterogeneous ice nuclei (IN) are shown to decrease the frequency of occurrence of supersaturation, and improve the comparison with observations at 192 hPa. Homogeneous freezing alone can not reproduce observed ice crystal number concentrations at low temperatures (<205 K), but the addition of heterogeneous IN improves the comparison somewhat. Increases in heterogeneous IN affect both high level cirrus clouds and low level liquid clouds. Increases in cirrus clouds lead to a more cloudy and moist lower troposphere with less precipitation, effects which we associate with the decreased convective activity. The change in the net cloud forcing is not very sensitive to the change in ice crystal concentrations, but the change in the net radiative flux at the top of the atmosphere is still large because of changes in water vapor. Changes in the magnitude of the assumed mesoscale temperature perturbations by 25% alter the ice crystal number concentrations and the net radiative fluxes by an amount that is comparable to that from a factor of 10 change in the heterogeneous IN number concentrations. Further improvements on the representation of mesoscale temperature perturbations, heterogeneous IN and the competition between homogeneous freezing and heterogeneous freezing are needed.


2021 ◽  
Author(s):  
Ulrike Proske ◽  
Sylvaine Ferrachat ◽  
David Neubauer ◽  
Ulrike Lohmann

&lt;p&gt;Clouds are of major importance for the climate system, but the radiative forcing resulting from their interaction with aerosols remains uncertain. To improve the representation of clouds in climate models, the parameterisations of cloud microphysical processes (CMPs) have become increasingly detailed. However, more detailed climate models do not necessarily result in improved accuracy for estimates of radiative forcing (Knutti and Sedl&amp;#225;&amp;#269;ek, 2013; Carslaw et al., 2018). On the contrary, simpler formulations are cheaper, sufficient for some applications, and allow for an easier understanding of the respective process' effect in the model.&lt;/p&gt;&lt;p&gt;This study aims to gain an understanding which CMP parameterisation complexity is sufficient through simplification. We gradually phase out processes such as riming or aggregation from the global climate model ECHAM-HAM, meaning that the processes are only allowed to exhibit a fraction of their effect on the model state. The shape of the model response as a function of the artificially scaled effect of a given process helps to understand the importance of this process for the model response and its potential for simplification. For example, if partially removing a process induces only minor alterations in the present day climate, this process presents as a good candidate for simplification. This may be then further investigated, for example in terms of computing time.&lt;br&gt;The resulting sensitivities to CMP complexity are envisioned to guide CMP model simplifications as well as steer research towards those processes where a more accurate representation proves to be necessary.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;&lt;br&gt;Carslaw, Kenneth, Lindsay Lee, Leighton Regayre, and Jill Johnson (Feb. 2018). &amp;#8220;Climate Models Are Uncertain, but We Can Do Something About It&amp;#8221;. In: Eos 99. doi: 10.1029/2018EO093757&lt;/p&gt;&lt;p&gt;Knutti, Reto and Jan Sedl&amp;#225;&amp;#269;ek (Apr. 2013). &amp;#8220;Robustness and Uncertainties in the New CMIP5 Climate Model Projections&amp;#8221;. In: Nature Climate Change 3.4, pp. 369&amp;#8211;373. doi: 10.1038/nclimate1716&lt;/p&gt;


Icarus ◽  
2015 ◽  
Vol 261 ◽  
pp. 133-148 ◽  
Author(s):  
Laura Kerber ◽  
François Forget ◽  
Robin Wordsworth

2012 ◽  
Vol 5 (3) ◽  
pp. 793-808 ◽  
Author(s):  
Y. Kamae ◽  
H. Ueda

Abstract. The mid-Pliocene (3.3 to 3.0 million yr ago), a globally warm period before the Quaternary, is recently attracting attention as a new target for paleoclimate modelling and data-model synthesis. This paper reports set-ups and results of experiments proposed in Pliocene Model Intercomparison Project (PlioMIP) using a global climate model, MRI-CGCM2.3. We conducted pre-industrial and mid-Pliocene runs by using the coupled atmosphere-ocean general circulation model (AOGCM) and its atmospheric component (AGCM) for the PlioMIP Experiments 2 and 1, respectively. In addition, we conducted two types of integrations in AOGCM simulation, with and without flux adjustments on sea surface. General characteristics of differences in the simulated mid-Pliocene climate relative to the pre-industrial in the three integrations are compared. In addition, patterns of predicted mid-Pliocene biomes resulting from the three climate simulations are compared in this study. Generally, difference of simulated surface climate between AGCM and AOGCM is larger than that between the two AOGCM runs, with and without flux adjustments. The simulated climate shows different pattern between AGCM and AOGCM particularly over low latitude oceans, subtropical land regions and high latitude oceans. The AOGCM simulations do not reproduce wetter environment in the subtropics relative to the present-day, which is suggested by terrestrial proxy data. The differences between the two types of AOGCM runs are small over the land, but evident over the ocean particularly in the North Atlantic and polar regions.


2012 ◽  
Vol 12 (18) ◽  
pp. 8645-8661 ◽  
Author(s):  
A. Sesartic ◽  
U. Lohmann ◽  
T. Storelvmo

Abstract. Some bacteria are among the most active ice nuclei found in nature due to the ice nucleation active proteins on their surface, which serve as active sites for ice nucleation. Their potential impact on clouds and precipitation is not well known and needs to be investigated. Bacteria as a new aerosol species were introduced into the global climate model (GCM) ECHAM5-HAM. The inclusion of bacteria acting as ice nuclei in a GCM leads to only minor changes in cloud formation and precipitation on a global level, however, changes in the liquid water path and ice water path are simulated, specifically in the boreal regions where tundra and forests act as sources of bacteria. Although bacteria contribute to heterogeneous freezing, their impact is reduced by their low numbers compared to other heterogeneous IN. This result confirms the outcome of several previous studies.


2021 ◽  
Author(s):  
Margaux Vals ◽  
Loïc Rossi ◽  
Franck Montmessin ◽  
François Forget ◽  
Ehouarn Millour ◽  
...  

2008 ◽  
Vol 3 (4) ◽  
pp. 045022 ◽  
Author(s):  
Ulrike Lohmann ◽  
Peter Spichtinger ◽  
Stephanie Jess ◽  
Thomas Peter ◽  
Herman Smit

2012 ◽  
Vol 5 (1) ◽  
pp. 383-423 ◽  
Author(s):  
Y. Kamae ◽  
H. Ueda

Abstract. The mid-Pliocene (3.3 to 3.0 million yr ago), a globally warm period before the Quaternary, is recently attracting attention as a new target for paleoclimate modelling and data-model synthesis. This paper reports set-ups and results of experiments proposed in Pliocene Model Intercomparison Project (PlioMIP) using with a global climate model, MRI-CGCM2.3. We conducted pre-industrial and mid-Pliocene runs by using of the coupled atmosphere-ocean general circulation model (AOGCM) and its atmospheric component (AGCM) for the PlioMIP Experiments 2 and 1, respectively. In addition, we conducted two types of integrations in AOGCM simulation, with and without flux adjustments on sea surface. General characteristics of differences in the simulated mid-Pliocene climate relative to the pre-industrial in the three integrations are compared in this study. Generally, difference of simulated surface climate between AGCM and AOGCM is larger than that between the two AOGCM runs, with and without flux adjustments. The simulated climate shows different pattern between AGCM and AOGCM particularly over low latitude oceans, subtropical land regions, and high latitude oceans. The AOGCM simulations do not reproduce wetter environment in the subtropics relative to the present-day, which is suggested by terrestrial proxy data. The differences between the two types of AOGCM runs are little over the land but evident over the ocean particularly in the North Atlantic and polar regions.


2021 ◽  
Author(s):  
Yusuf Bhatti ◽  
Laura Revell ◽  
Adrian McDonald ◽  
Jonny Willaims

&lt;p&gt;We studied sulfate aerosols over the Southern Ocean using the atmosphere-only climate model HadGEM3-GA7.1. The model contains biases in the aerosol seasonal variability over the Southern Ocean (40&amp;#176;S to 60&amp;#176;S), which cascade to uncertainties in aerosol-cloud interactions. Aerosols over the Southern Ocean are primarily natural in origin, such as sea spray aerosol and sulfate aerosol formed by phytoplankton-produced dimethyl sulfide (DMS).&lt;/p&gt;&lt;p&gt;The current sulfate chemistry scheme implemented in the model simplifies the oxidation pathways for DMS, which has been identified as a major source of the seasonal bias present. The simulations performed here incorporate a comprehensive sulfate scheme in both the gas and aqueous-phase. An intermediate complexity biogeochemical dynamic model, MEDUSA, simulated a global climatology of seawater DMS, which is compared with a seawater DMS observational dataset from 2011. We compared the seasonality of sulfate aerosols over the Southern Ocean, and the global distribution using the two seawater DMS climatologies. Simulated aerosols over the Southern Ocean were evaluated against satellite and in-situ observations. The results show the impact of seawater DMS on sulfate aerosols and their influence on cloud formation.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document