Seed order for strings of Bessel functions by Miller’s algorithm

1990 ◽  
Vol 58 (1) ◽  
pp. 92-92 ◽  
Author(s):  
Mark A. Heald
2011 ◽  
Vol 33 (1) ◽  
Author(s):  
E. Hernández ◽  
K. Commeford ◽  
M.J. Pérez-Quiles

Higher order Bessel functions are prevalent in physics and engineering and there exist different methods to evaluate them quickly and efficiently. Two of these methods are Miller's algorithm and the continued fractions algorithm. Miller's algorithm uses arbitrary starting values and normalization constants to evaluate Bessel functions. The continued fractions algorithm directly computes each value, keeping the error as small as possible. Both methods respect the stability of the Bessel function recurrence relations. Here we outline both methods and explain why the continued fractions algorithm is more efficient. The goal of this paper is both (1) to introduce the continued fractions algorithm to physics and engineering students and (2) to present a MATLAB GUI (Graphic User Interface) where this method has been used for computing the Semi-integer Bessel Functions and their zeros.


Mathematics ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 198
Author(s):  
Yuriy Povstenko

The Wright function is a generalization of the exponential function and the Bessel functions. Integral relations between the Mittag–Leffler functions and the Wright function are presented. The applications of the Wright function and the Mainardi function to description of diffusion, heat conduction, thermal and diffusive stresses, and nonlocal elasticity in the framework of fractional calculus are discussed.


2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
B. A. Frasin ◽  
Ibtisam Aldawish

The main object of this paper is to find necessary and sufficient conditions for generalized Bessel functions of first kind zup(z) to be in the classes SPp(α,β) and UCSP(α,β) of uniformly spiral-like functions and also give necessary and sufficient conditions for z(2-up(z)) to be in the above classes. Furthermore, we give necessary and sufficient conditions for I(κ,c)f to be in UCSPT(α,β) provided that the function f is in the class Rτ(A,B). Finally, we give conditions for the integral operator G(κ,c,z)=∫0z(2-up(t))dt to be in the class UCSPT(α,β). Several corollaries and consequences of the main results are also considered.


Author(s):  
Mohamed Amine Boubatra ◽  
Selma Negzaoui ◽  
Mohamed Sifi

2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Didier Pilod ◽  
Jean-Claude Saut ◽  
Sigmund Selberg ◽  
Achenef Tesfahun

AbstractWe prove several dispersive estimates for the linear part of the Full Dispersion Kadomtsev–Petviashvili introduced by David Lannes to overcome some shortcomings of the classical Kadomtsev–Petviashvili equations. The proof of these estimates combines the stationary phase method with sharp asymptotics on asymmetric Bessel functions, which may be of independent interest. As a consequence, we prove that the initial value problem associated to the Full Dispersion Kadomtsev–Petviashvili is locally well-posed in $$H^s(\mathbb R^2)$$ H s ( R 2 ) , for $$s>\frac{7}{4}$$ s > 7 4 , in the capillary-gravity setting.


Sign in / Sign up

Export Citation Format

Share Document